**Instruction Manual** 

# Tektronix

TMS 109A Socket 7 Microprocessor Support 071-0497-01

Warning

The servicing instructions are for use by qualified personnel only. To avoid personal injury, do not perform any servicing unless you are qualified to do so. Refer to all safety summaries prior to performing service. Copyright © Tektronix, Inc. All rights reserved. Licensed software products are owned by Tektronix or its suppliers and are protected by United States copyright laws and international treaty provisions.

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, or subparagraphs (c)(1) and (2) of the Commercial Computer Software – Restricted Rights clause at FAR 52.227-19, as applicable.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supercedes that in all previously published material. Specifications and price change privileges reserved.

Printed in the U.S.A.

Tektronix, Inc., P.O. Box 1000, Wilsonville, OR 97070-1000

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

#### SOFTWARE WARRANTY

Tektronix warrants that the media on which this software product is furnished and the encoding of the programs on the media will be free from defects in materials and workmanship for a period of three (3) months from the date of shipment. If a medium or encoding proves defective during the warranty period, Tektronix will provide a replacement in exchange for the defective medium. Except as to the media on which this software product is furnished, this software product is provided "as is" without warranty of any kind, either express or implied. Tektronix does not warrant that the functions contained in this software product will meet Customer's requirements or that the operation of the programs will be uninterrupted or error-free.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period. If Tektronix is unable to provide a replacement that is free from defects in materials and workmanship within a reasonable time thereafter, Customer may terminate the license for this software product and return this software product and any associated materials for credit or refund.

THIS WARRANTY IS GIVEN BY TEKTRONIX IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPLACE DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

#### HARDWARE WARRANTY

Tektronix warrants that the products that it manufactures and sells will be free from defects in materials and workmanship for a period of one (1) year from the date of shipment. If a product proves defective during this warranty period, Tektronix, at its option, either will repair the defective product without charge for parts and labor, or will provide a replacement in exchange for the defective product.

In order to obtain service under this warranty, Customer must notify Tektronix of the defect before the expiration of the warranty period and make suitable arrangements for the performance of service. Customer shall be responsible for packaging and shipping the defective product to the service center designated by Tektronix, with shipping charges prepaid. Tektronix shall pay for the return of the product to Customer if the shipment is to a location within the country in which the Tektronix service center is located. Customer shall be responsible for paying all shipping charges, duties, taxes, and any other charges for products returned to any other locations.

This warranty shall not apply to any defect, failure or damage caused by improper use or improper or inadequate maintenance and care. Tektronix shall not be obligated to furnish service under this warranty a) to repair damage resulting from attempts by personnel other than Tektronix representatives to install, repair or service the product; b) to repair damage resulting from improper use or connection to incompatible equipment; c) to repair any damage or malfunction caused by the use of non-Tektronix supplies; or d) to service a product that has been modified or integrated with other products when the effect of such modification or integration increases the time or difficulty of servicing the product.

THIS WARRANTY IS GIVEN BY TEKTRONIX IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED. TEKTRONIX AND ITS VENDORS DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. TEKTRONIX' RESPONSIBILITY TO REPAIR OR REPLACE DEFECTIVE PRODUCTS IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO THE CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX AND ITS VENDORS WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX OR THE VENDOR HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.

# **Table of Contents**

| General Safety Summary |    |  |
|------------------------|----|--|
| Service Safety Summary | vi |  |
| Preface                | ix |  |

## **Getting Started**

| Support Package Description                   | 1–1  |
|-----------------------------------------------|------|
| Logic Analyzer Software Compatibility         | 1-1  |
| Logic Analyzer Configuration                  | 1–1  |
| Requirements and Restrictions                 | 1-2  |
| Functionality Not Supported                   | 1–3  |
| Configuring the Probe Adapter                 | 1–4  |
| MFG_TEST Jumper                               | 1–4  |
| CLK Jumper                                    | 1–5  |
| Processor Selection Jumper                    | 1–5  |
| D/P# Signal Jumper                            | 1–5  |
| Tracking Jumper                               | 1–6  |
| Address Synthesis Jumper                      | 1–6  |
| Connecting to a System Under Test             | 1–6  |
| Connect the P6434 Probes to the Probe Adapter | 1–6  |
| Remove the Microprocessor                     | 1–7  |
| Choose a Protective Socket                    | 1-8  |
| Insert Probe Adapter                          | 1–9  |
| Insert Microprocessor in the Probe Adapter    | 1-10 |
| Alternate Connections                         | 1-10 |
| Applying and Removing Power                   | 1-13 |
| Channel Assignments                           | 1-14 |
| CPU To Mictor Connections                     | 1-22 |
|                                               |      |

## **Operating Basics**

| Setting Up the Support                  | 2–1  |
|-----------------------------------------|------|
| Channel Group Definitions               | 2-1  |
| Clocking Options                        | 2-1  |
| Custom Clocking                         | 2-1  |
| ClockingOptions                         | 2–3  |
| Mode Differences                        | 2-5  |
| Component Mode                          | 2–5  |
| Chip Set Mode                           | 2–5  |
| Symbols                                 | 2-5  |
| Acquiring and Viewing Disassembled Data | 2–9  |
| Acquiring Data                          | 2–9  |
| Viewing Disassembled Data               | 2–9  |
| Timing-Waveform Display Format          | 2-12 |
| Hardware Display Format                 | 2-12 |

|                              | Software Display Format                 | 2-15 |
|------------------------------|-----------------------------------------|------|
|                              | Control Flow Display Format             | 2-15 |
|                              | Subroutine Display Format               | 2–16 |
|                              | Changing How Data is Displayed          | 2-17 |
|                              | Optional Display Selections             | 2-17 |
|                              | Dual Microprocessors Execution Tracing  | 2-18 |
|                              | Branch Trace Messages                   | 2-21 |
|                              | Out-Of-Order Fetches                    | 2-21 |
|                              | Speculative Prefetch Cycles             | 2-23 |
|                              | Cache Invalidation Cycles               | 2-24 |
|                              | Burst Cycles                            | 2-24 |
|                              | System Management Mode (SMM)            | 2-24 |
|                              | MMX Instruction Set                     | 2-25 |
|                              | 3DNow!                                  | 2-25 |
|                              | Marking Cycles                          | 2-25 |
|                              | Displaying Exception Vectors            | 2-26 |
|                              | Viewing an Example of Disassembled Data | 2-28 |
|                              |                                         |      |
| Specifications               |                                         |      |
|                              | Probe Adapter Description               | 3–1  |
|                              | Specifications                          | 3-2  |
|                              |                                         | 5 2  |
| Maintenance                  |                                         |      |
|                              | Probe Adapter Circuit Description       | 4–1  |
|                              | Replacing the Fuse                      | 4-2  |
|                              |                                         |      |
| Diagrams                     |                                         |      |
| <b>Replaceable Electrica</b> | I Parts                                 |      |
| ·                            |                                         |      |
|                              | Parts Ordering Information              | 6–1  |
| Indox                        |                                         |      |
| Index                        |                                         |      |

## List of Figures

| Figure 1–1: Jumper locations on the probe adapter                               | 1–5  |
|---------------------------------------------------------------------------------|------|
| Figure 1–2: Connecting a probe to the probe adapter                             | 1–7  |
| Figure 1–3: Protective sockets                                                  | 1–8  |
| Figure 1–4: Placing the socket and probe adapter onto the system under test     | 1–9  |
| Figure 1–5: Inserting a microprocessor into the probe adapter                   | 1–10 |
| Figure 1–6: ITP and system reset pin locations on the probe adapter             | 1–12 |
| Figure 1–7: Power jack location on the probe adapter                            | 1–14 |
| Figure 1–8: Pin assignments for a Mictor connector                              |      |
| (component side)                                                                | 1–22 |
| Figure 2–1: Nonpipelined single and Burst Transfer cycles                       | 2–2  |
| Figure 2–2: Pipelined cycles                                                    | 2–3  |
| Figure 2–3: Hardware display format                                             | 2–14 |
| Figure 2–4: Data displayed from the Primary and<br>Dual microprocessors         | 2–19 |
| Figure 2–5: Disassembled data displayed from the Primary<br>microprocessor only | 2–20 |
| Figure 2–6: Disassembled data displayed from the Dual                           |      |
| microprocessor only                                                             | 2–20 |
| Figure 2–7: Display of target and source Branch Trace Messages                  | 2–21 |
| Figure 2–8: Software display for the AMD Bus cycles                             | 2–22 |
| Figure 2–9: Hardware display for the AMD Bus cycles                             | 2–23 |
| Figure 2–10: Speculative Prefetch cycles                                        | 2–24 |
| Figure 3–1: Dimensions of the probe adapter                                     | 3–4  |
| Figure 4–1: Location of the fuse on the probe adapter                           | 4–2  |
| Figure 6–1: TMS 109A Socket 7 probe adapter exploded view                       | 6–5  |

## List of Tables

| Table 1–1: Jumper positions and function                        | 1–4  |
|-----------------------------------------------------------------|------|
| Table 1–2: ITP (J580) signal Information                        | 1–11 |
| Table 1–3: J260 jumper pin assignments                          | 1–12 |
| Table 1–4: Address channel group assignments                    | 1–14 |
| Table 1–5: Data channel group assignments                       | 1–16 |
| Table 1–6: Data_Lo channel group assignments                    | 1–17 |
| Table 1–7: Control channel group assignments                    | 1–18 |
| Table 1–8: Data Size channel group assignments                  | 1–19 |
| Table 1–9: Cache channel group assignments                      | 1–19 |
| Table 1–10: Misc channel group assignments                      | 1–19 |
| Table 1–11: Clock channel group assignments                     | 1–20 |
| Table 1–12: Signals not required for clocking or disassembly    | 1–21 |
| Table 1–13: Signals on the probe adapter but not acquired       | 1–21 |
| Table 1–14: Signals not connected to probe adapter              | 1–21 |
| Table 1–15: CPU to Mictor connections for Mictor A pins         | 1–23 |
| Table 1–16: CPU to Mictor connections for Mictor D pins         | 1–24 |
| Table 1–17: CPU to Mictor connections for Mictor E pins         | 1–25 |
| Table 1–18: CPU to Mictor connections for Mictor C pins         | 1–27 |
| Table 2–1: Control group symbol table definitions               | 2–5  |
| Table 2–2: Meaning of special characters in the display         | 2–10 |
| Table 2–3: Cycle type definitions                               | 2–12 |
| Table 2–4: Trace Processor and Other Processor field selections | 2–19 |
| Table 2–5: Exception vectors for Real Addressing mode           | 2–26 |
| Table 2–6: Exception vectors for Protected Addressing mode      | 2–27 |
| Table 3–1: Electrical specifications                            | 3–2  |
| Table 3–2: Environmental specifications                         | 3–3  |
| Table 4–1: Socket 7 signal delays using the probe adapter       | 4–2  |

# **General Safety Summary**

Review the following safety precautions to avoid injury and prevent damage to this product or any products connected to it. To avoid potential hazards, use this product only as specified.

Only qualified personnel should perform service procedures.

While using this product, you may need to access other parts of the system. Read the *General Safety Summary* in other system manuals for warnings and cautions related to operating the system.

# To Avoid Fire or<br/>Personal InjuryUse Proper Power Cord. Use only the power cord specified for this product and<br/>certified for the country of use.

**Connect and Disconnect Properly.** Do not connect or disconnect probes or test leads while they are connected to a voltage source.

**Connect and Disconnect Properly.** Connect the probe output to the measurement instrument before connecting the probe to the circuit under test. Disconnect the probe input and the probe ground from the circuit under test before disconnecting the probe from the measurement instrument.

**Ground the Product**. This product is indirectly grounded through the grounding conductor of the mainframe power cord. To avoid electric shock, the grounding conductor must be connected to earth ground. Before making connections to the input or output terminals of the product, ensure that the product is properly grounded.

**Observe All Terminal Ratings**. To avoid fire or shock hazard, observe all ratings and markings on the product. Consult the product manual for further ratings information before making connections to the product.

Do not apply a potential to any terminal, including the common terminal, that exceeds the maximum rating of that terminal.

Use Proper AC Adapter. Use only the AC adapter specified for this product.

**Do Not Operate Without Covers.** Do not operate this product with covers or panels removed.

Use Proper Fuse. Use only the fuse type and rating specified for this product.

Avoid Exposed Circuitry. Do not touch exposed connections and components when power is present.

**Do Not Operate With Suspected Failures.** If you suspect there is damage to this product, have it inspected by qualified service personnel.

Do Not Operate in Wet/Damp Conditions.

Do Not Operate in an Explosive Atmosphere.

Keep Product Surfaces Clean and Dry.

**Provide Proper Ventilation.** Refer to the manual's installation instructions for details on installing the product so it has proper ventilation.

#### Symbols and Terms

Terms in this Manual. These terms may appear in this manual:



**WARNING**. Warning statements identify conditions or practices that could result in injury or loss of life.



**CAUTION.** Caution statements identify conditions or practices that could result in damage to this product or other property.

Terms on the Product. These terms may appear on the product:

DANGER indicates an injury hazard immediately accessible as you read the marking.

WARNING indicates an injury hazard not immediately accessible as you read the marking.

CAUTION indicates a hazard to property including the product.

Symbols on the Product. The following symbols may appear on the product:



Refer to Manual



High Voltage





# Service Safety Summary

Only qualified personnel should perform service procedures. Read this *Service Safety Summary* and the *General Safety Summary* before performing any service procedures.

**Do Not Service Alone**. Do not perform internal service or adjustments of this product unless another person capable of rendering first aid and resuscitation is present.

**Disconnect Power**. To avoid electric shock, switch off the instrument power, then disconnect the power cord from the mains power.

**Use Care When Servicing With Power On**. Dangerous voltages or currents may exist in this product. Disconnect power, remove battery (if applicable), and disconnect test leads before removing protective panels, soldering, or replacing components.

To avoid electric shock, do not touch exposed connections.

# Preface

This instruction manual contains specific information about the TMS 109A Socket 7 microprocessor support package and is part of a set of information on how to operate this product on compatible Tektronix logic analyzers.

If you are familiar with operating microprocessor support packages on the logic analyzer for which the TMS 109A Socket 7 support was purchased, you will only need this instruction manual to set up and run the support.

If you are not familiar with operating microprocessor support packages, you will need to supplement this instruction manual with information on basic operations to set up and run the support.

**NOTE**. The disassembly software is optimized to decode instruction streams and bus activities from Intel microprocessors and AMD-K6-2 therefore, the disassembler may not support unique characteristics of other manufacturers. However, you can reliably conduct timing analysis of nonIntel Socket 7 processors. Consult your Tektronix field office for future enhancements.

### **Manual Conventions**

This manual uses the following conventions:

- The term "disassembler" refers to the software that decodes bus cycles into instruction mnemonics and cycle types.
- A pound sign (#) following a signal name indicates an active low signal.
- The phrase "information on basic operations" refers to your online help.

## Contacting Tektronix

| Product<br>Support    | For questions about using Tektronix measurement products, call<br>toll free in North America:<br>1-800-TEK-WIDE (1-800-835-9433 ext. 2400)<br>6:00 a.m. – 5:00 p.m. Pacific time |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       | Or contact us by e-mail:<br>tm_app_supp@tek.com                                                                                                                                  |
|                       | For product support outside of North America, contact your local Tektronix distributor or sales office.                                                                          |
| Service<br>Support    | Tektronix offers extended warranty and calibration programs as<br>options on many products. Contact your local Tektronix<br>distributor or sales office.                         |
|                       | For a listing of worldwide service centers, visit our web site.                                                                                                                  |
| For other information | In North America:<br>1-800-TEK-WIDE (1-800-835-9433)<br>An operator will direct your call.                                                                                       |
| To write us           | Tektronix, Inc.<br>P.O. Box 1000<br>Wilsonville, OR 97070-1000<br>USA                                                                                                            |
| Website               | Tektronix.com                                                                                                                                                                    |
|                       |                                                                                                                                                                                  |

# **Getting Started**

# **Getting Started**

This chapter contains information on the TMS 109A Socket 7 microprocessor support package:

- How to configure the probe adapter
- How to connect to the system under test
- How to apply power to and remove power from the probe adapter

## **Support Package Description**

The TMS 109A Socket 7 microprocessor support package disassembles data from systems that are based on the Intel Pentium, low-power embedded Pentium with MMX technology, AMD-K6-2 and Socket 7 microprocessor devices. The support runs on a compatible Tektronix logic analyzer equipped with a 136-channel module.

A complete list of standard and optional accessories is provided at the end of the parts list in the *Replaceable Parts List* chapter.

To use this support efficiently, you must have the items listed in the information on basic operations (in the online help) and the following items:

- Pentium Processors Family Developer's Manual, Intel 1997(p/n to be updated)
- AMD-K6-2 Processor, Data Sheet, AMD, 1999

Information on basic operations is also in your online help.

#### Logic Analyzer Software Compatibility

The label on the microprocessor support floppy disk states which version of logic analyzer software the support is compatible with.

#### Logic Analyzer Configuration

To use the TMS 109A Socket 7 support package, the Tektronix logic analyzer must be equipped with a 136-channel module at a minimum.

Refer to information on basic operations to determine how many modules and probes your logic analyzer needs to meet the minimum channel requirements for the TMS 109A Socket 7 microprocessor support.

#### **Requirements and Restrictions**

You should review the general requirements and restrictions of microprocessor supports in the information on basic operations as they pertain to your system under test.

You should also review electrical, environmental, and mechanical specifications in the *Specifications* chapter in this manual as they pertain to your system under test, as well as the following descriptions of other Socket 7 support requirements and restrictions.

**System Clock Rate**. The TMS 109A Socket 7 support can acquire data from the Socket 7 microprocessors at bus speeds of up to 100 MHz; the tested clock speed is 100 MHz. This specification is valid at the time this manual was printed. Contact your Tektronix sales representative for current information on the fastest devices supported.

**System Under Test Power**. Whenever the system under test is powered off, be sure to remove power from the probe adapter. Refer to *Applying and Removing Power* on page 1–13 for information on how to remove power from the probe adapter.

**Disabling the Instruction Cache.** To disassemble acquired data, you must disable the internal instruction cache. Disabling the cache makes all instruction prefetches visible on the bus so they can be acquired and disassembled.

Cache Invalidation Cycles. Cache Invalidation addresses are not acquired.

**Bus Hold Cycles.** Bus Hold cycles are not acquired while the RESET signal is active.

**AHOLD Signal.** If the AHOLD signal is active (high) during a Writeback cycle (a four cycle Burst Write), the acquired address is undefined.

**Burst Cycles.** The Socket 7 microprocessor expects the memory system to increment addresses during a Burst cycle. When viewing disassembled data, the disassembler synthesizes the addresses. When viewing state data, the addresses appear to be identical.

Probe Mode Cycles. Probe Mode cycles are not identified.

**Directory Table and Descriptor Table Reads and Writes.** These reads and writes are not disassembled.

**Bus Anomalies**. Some combinations of instructions and operating modes of the microprocessor can cause additional cycles to be fetched. This behavior is unpredictable, not documented, and can cause the disassembler to operate incorrectly with fetched cycles. This is most likely to occur during Floating Point operations.

AMD-K6-2 processor has a out-of-order fetch mechanism. For fetches, AMD always loads 32 bytes, starting from the most significant octabyte (octet) in the block. For example these addresses 00, 08, 10, and18 would be fetched in this order 18, 10, 08, and 00. Regardless of what the critical word is or if the cache is enabled. For the disassembler to work properly it needs these 32 byte fetch blocks or the disassembly will be incorrect.

**Nonintrusive Acquisition.** The Socket 7 microprocessor support will not intercept, modify, or present signals back to the system under test.

#### **Functionality Not Supported**

**Reads/Writes.** The TMS 109A Socket 7 support package does not interpret directory or descriptor tables for reads/writes. When long jumps and calls are executed you may need to supply a code-segment size (see page 2–18), and the first opcode byte using the Mark Opcode function (see page 2–25).

## **Configuring the Probe Adapter**

There are five jumpers on the probe adapter. Table 1–1 lists the jumper positions and functions.

| Probe adapter    | Position | Function                                                                                                                                                                                                                                                                                                                                                                               |
|------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J240<br>MFG_TEST | 1–2      | When the processor extends the clock speed to below 40 MHz, the jumpered pins 1-2 turn the phased lock loop into a buffer that disables the phased lock loop signal.                                                                                                                                                                                                                   |
|                  | OPEN     | Default, phased look loop signal enabled                                                                                                                                                                                                                                                                                                                                               |
| J250             | 1–2      | Extends the Socket 7 microprocessor system speed between 40–150 MHz                                                                                                                                                                                                                                                                                                                    |
| CLK              | 2–3      | Extends the Socket 7 microprocessor system speed between 20–75 MHz                                                                                                                                                                                                                                                                                                                     |
| J900             | 1–2      | Supports microprocessors that do not have the D/P# pin.                                                                                                                                                                                                                                                                                                                                |
| Proc Sel 2–3     | 2–3      | Supports microprocessors that have the D/P# pin.                                                                                                                                                                                                                                                                                                                                       |
| J910             | 1–2      | Acquires the D/P# signal from pin AE35 of the socket being probed.                                                                                                                                                                                                                                                                                                                     |
| D/P#             | OPEN     | Acquires the D/P# signal from an external source. If this jumper is left open, you must route the D/P# signal to pin 1 of this jumper from an external source. This allows you to probe your system from the Dual socket as long as the D/P# signal is accessible on the system board. Ensure that the jumper J900 is in position 2–3 before routing the D/P# signal to pin 1 of J910. |
| J920             | 1–2      | Enables tracking of burst and pipelined cycles while BOFF# and HLDA are asserted                                                                                                                                                                                                                                                                                                       |
| Tracking         | 2–3      | Disables tracking of burst and pipelined cycles while BOFF# and HLDA are asserted.<br>This setting can be used if an external master's signal timing is different from that of the P54C.                                                                                                                                                                                               |
| J921<br>SYNTH    | 1–2      | Enable Address Synthesis (A(2:0) are derived from BE(7:0)#)                                                                                                                                                                                                                                                                                                                            |
|                  | 2–3      | Disable Address Synthesis (A(2:0)=0)                                                                                                                                                                                                                                                                                                                                                   |

Table 1–1: Jumper positions and function

**MFG\_TEST Jumper** To acquire data at frequencies below 40 MHz on the probe adapter, short the two pins on J240. This disables the phased lock loop signal to all clocked components. Figure 1–1 shows the location of J240 on the probe adapter.

**CLK Jumper** The CLK jumper (J250 on the probe adapter) should be placed in the 40–150 MHz position to acquire data from a system running at or faster than 45 MHz. The jumper should be placed in the 20–75 MHz position to acquire data from a system running slower than 45 MHz. Figure 1–1 shows the location of J250 on the probe adapter.



Figure 1–1: Jumper locations on the probe adapter

| Processor Selection<br>Jumper | Place the Processor Selection jumper, J900, in the 1–2 position to support microprocessors that do not have the D/P# pin.                                                                                           |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               | Place the Processor Selection jumper in the $2-3$ position to support microprocessors that have the D/P#. Figure $1-1$ shows the location of J900 on the probe adapter.                                             |
| D/P# Signal Jumper            | When the D/P# signal jumper J910 on the probe adapter is in the $1-2$ position, the D/P# signal is acquired from pin AE35 of the socket being probed. Figure $1-1$ shows the location of J910 on the probe adapter. |

|                             | When the jumper is open (not connected), the Socket 7 support acquires the D/P# signal from an external source, and you will have to route the D/P# signal to pin 1 of this jumper externally. This allows you to probe your system from the dual socket as long as the D/P# signal is accessible on the system under test.                                                                                                                                             |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Tracking Jumper             | The Tracking jumper J920 on the probe adapter (see Figure $1-1$ ) does not need to be moved from the default position (pins $1-2$ connected).                                                                                                                                                                                                                                                                                                                           |
|                             | The only time this jumper should be moved is when the tracking circuitry malfunctions. An indication of such a malfunction is when you see activity on the bus during a BOFF or HLDA cycle that is uncharacteristic of the Socket 7 microprocessor. When the jumper is in the 2–3 position, the circuitry on the probe adapter does not track BOFF and HLDA cycles. A data sample will show that such a cycle occurred, but it will not contain meaningful information. |
| Address Synthesis<br>Jumper | When the Address Synthesis jumper (J921 on the probe adapter) is in position $1-2$ , A(2:0) is derived from the BE(7:0)# signals and stored in the acquisition memory with the rest of the address.                                                                                                                                                                                                                                                                     |
|                             | When the jumper is in position 2–3, it disables address synthesis, $A(2:0)=0$ .<br>Figure 1–1 shows the location of J921 on the probe adapter.                                                                                                                                                                                                                                                                                                                          |

#### **Connecting to a System Under Test**

Before you connect to the system under test, you must connect the probes to the module. Your system under test must also have a minimum amount of clearance surrounding the microprocessor to accommodate the probe adapter. Refer to the *Specifications* chapter in this manual for the required clearances.

Connect the P6434 Probes to the Probe Adapter To connect the logic analyzer to a system under test using a probe adapter, follow these steps:

**1.** Power off your system under test. It is not necessary to power off the logic analyzer.



**CAUTION.** To prevent static damage to the microprocessor, the probe adapter, the probes, and the module, handle in a static-free environment. Static discharge can damage all the above components.

Always wear a grounding wrist strap or similar device while handling the microprocessor and probe adapter.

- **2.** To discharge your stored static electricity, touch the ground connector located on the back of the logic analyzer. Then, touch any of the ground pins of the probe adapter to discharge stored static electricity from the probe adapter.
- **3.** Connect the P6434 probes to the probe adapter as shown in Figure 1–2. Match the channel groups and numbers on the probe labels to the corresponding pins on the probe adapter. Match the ground pins on the probes to the corresponding pins on the probe adapter.



**CAUTION.** To prevent damage to the probe and probe adapter, always position the probe perpendicular to the mating connector and gently connect the probe. Incorrect handling of the P6434 probe while connecting it to the probe adapter can result in damage to the probe or to the mating connector on the probe adapter.

**4.** Position the probe tip perpendicular to the mating connector and gently connect the probe (see Figure 1–2).

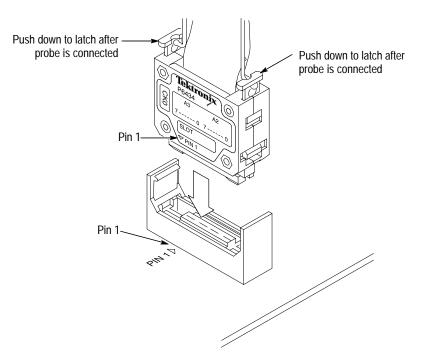
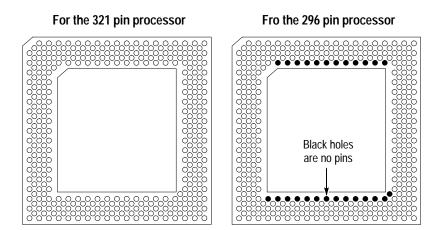


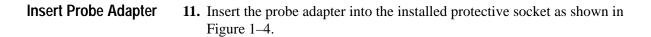

Figure 1–2: Connecting a probe to the probe adapter

5. When connected, push down the latch releases on the probe to set the latch.


Remove the Microprocessor **6.** Follow the procedure from the Socket 7 microprocessor vendor to remove the microprocessor from the socket on your system under test.

#### Choose a Protective Socket

7. Choose the correct protective socket.


Choose the 321-pin or 296-pin protective socket depending on the processor pinout (see Figure 1–3).

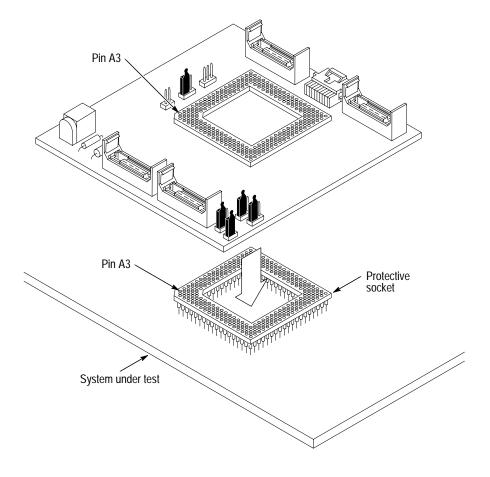
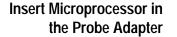
**NOTE**. Use one protective socket at a time. Do not install a protective socket without removing all existing sockets from the system under test and from the bottom of the probe adapter assembly.

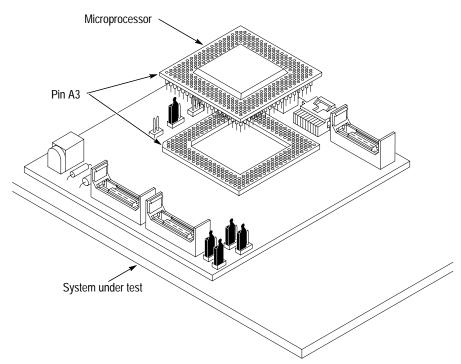


#### Figure 1–3: Protective sockets

- **8.** Align the A3 pin indicator on the protective socket with A3 pin of the socket on your system under test.
- **9.** Insert the protective socket into the system under test as shown in Figure 1–4.
- **10.** Align the A3 pin indicator on the probe adapter with the A3 pin indicator on the installed protective socket.





Figure 1-4: Placing the socket and probe adapter onto the system under test



**CAUTION.** To prevent permanent damage to the microprocessor once power is applied, correctly place the microprocessor into the probe adapter.



**12.** Insert the microprocessor into the probe adapter as shown in Figure 1–5.



#### Figure 1–5: Inserting a microprocessor into the probe adapter

**13.** Apply forced air cooling across the probe adapter to keep the components on the probe adapter cool.

#### **Alternate Connections**

**NOTE**. Refer to the Intel document ITP700 Port Users Guide for more information on the ITP interface.

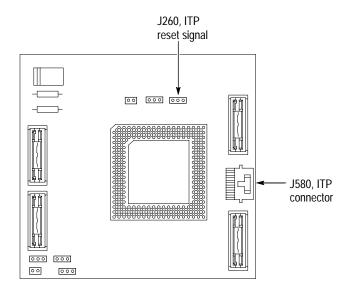

ITP The Socket 7 probe adapter provides an ITP square-pin header (J580) to connect to the In-Target Probing (ITP) debugging hardware on the probe adapter as shown in Figure 1–6 on page 1–12. Table 1–2 lists the signals on the connector (J580). The ITP debugging hardware is not included with this TMS 109A Socket 7 hardware support package. Contact your microprocessor vendor for information on how to obtain the ITP debugging hardware. **NOTE**. The ITP connection is implemented as a point-to-point connection. As such, it cannot be used in a loopthrough mode for programming other Socket 7 modules.

Table 1–2 lists the pin-to-signal assignments of the In-Target Probe (ITP) connector J580 on the probe adapter.

| Pin number | Signal name |
|------------|-------------|
| 1          | B_INIT      |
| 2          | DBRESET     |
| 3          | B_RESET     |
| 4          | GND         |
| 5          | -           |
| 6          | +3.3 V      |
| 7          | R_S#        |
| 8          | GND         |
| 9          | -           |
| 10         | GND         |
| 11         | PRDY        |
| 12         | TDI         |
| 13         | TDO         |
| 14         | TMS         |
| 15         | GND         |
| 16         | ТСК         |
| 17         | GND         |
| 18         | TRST#       |
| 19         | -           |
| 20         | -           |

Table 1–2: ITP (J580) signal Information

These channels are not defined in any channel group and data acquired from them is not displayed. To display data, you will need to define a channel group.



#### Figure 1-6: ITP and system reset pin locations on the probe adapter

**Optional System Reset.** The ITP circuitry on the Interposer board does not allow external ITP debugging hardware to induce a system reset through the DBRESET# signal on the ITP connector. If you need to enable this feature, you must provide the connection to your system under test. Table 1–3 lists the signals on J260 and Figure 1–6 shows the location.

| Jumper pin number | Socket 7 signal name                                              |
|-------------------|-------------------------------------------------------------------|
| 1                 | OC_DBRESET# (Open<br>Collector, active low version<br>of DBRESET) |
| 2                 | NC                                                                |
| 3                 | DBRESET                                                           |

Table 1–3: J260 jumper pin assignments

The probe adapter contains pins that allow you to connect the DBRESET (or the active low, open collector version OC\_DBRESET#) signal to your system under test. Table 1–3 shows the pins and signals you can connect to on J260 on the probe adapter.

When using these signals, you need to make sure that the system under test is not driving the OC\_DBRESET# or DBRESET signal.

Check that the R/S#, TDI, TMS, TCLK, and TRST# signals are not driven. If this is not possible, you may clip these five pins on one of the sacrificial sockets

provided with the probe adapter. Inserting this modified socket into your system socket will isolate these signals on the probe adapter for use by the ITP cable.

#### Applying and Removing Power

A power supply for the Socket 7 probe adapter is included with the support. The power supply provides +5 volts power to the probe adapter. The center connector of the power jack connects to Vcc.

**NOTE**. Whenever the system under test is powered off, be sure to remove power from the probe adapter.

To apply power to the Socket 7 probe adapter and system under test, follow these steps:



**CAUTION.** To prevent possible permanent damage to the probe adapter and Socket 7 microprocessor, use the +5 V power supply provided by Tektronix. Do not mistake another power supply that looks similar for the +5 V power supply.

1. Connect the +5 V power supply to the jack on the probe adapter. Figure 1–7 shows the location of the jack on the probe adapter.



**CAUTION**. To prevent possible permanent damage to the Socket 7 microprocessor and system under test, apply power to the probe adapter before applying power to your system under.

- 2. Plug the power supply for the probe adapter into an electrical outlet.
- **3.** Power on the system under test.

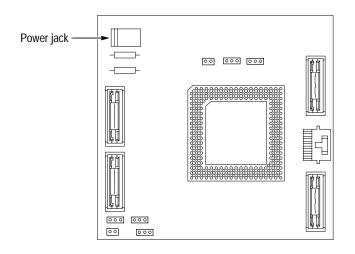



Figure 1–7: Power jack location on the probe adapter

#### **Channel Assignments**

Channel assignments shown in Tables 1–4 through 1–10 use the following conventions:

- A pound sign (#) following a signal name indicates an active low signal.
- All signals are required by the support unless indicated otherwise.
- An equals sign (=) following a signal name indicates that it is double probed.
- Channels are shown starting with the most significant bit (MSB) descending to the least significant bit (LSB).

The channel group assignment tables for disassembly and Timing are Address, Data, Data\_Lo, Control, DataSize, Cache, and Misc.

Table 1–4 lists the probe section and channel assignments for the Address group and the microprocessor signal for each channel connect. By default the Address channel group assignments are displayed in hexadecimal.

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 31           | A3:7            | A31                     |
| 30           | A3:6            | A30                     |
| 29           | A3:5            | A29                     |
| 28           | A3:4            | A28                     |

Table 1–4: Address channel group assignments

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 27           | A3:3            | A27                     |
| 26           | A3:2            | A26                     |
| 25           | A3:1            | A25                     |
| 24           | A3:0            | A24                     |
| 23           | A2:7            | A23                     |
| 22           | A2:6            | A22                     |
| 21           | A2:5            | A21                     |
| 20           | A2:4            | A20                     |
| 19           | A2:3            | A19                     |
| 18           | A2:2            | A18                     |
| 17           | A2:1            | A17                     |
| 16           | A2:0            | A16                     |
| 15           | A1:7            | A15                     |
| 14           | A1:6            | A14                     |
| 13           | A1:5            | A13                     |
| 12           | A1:4            | A12                     |
| 11           | A1:3            | A11                     |
| 10           | A1:2            | A10                     |
| 9            | A1:1            | A9                      |
| 8            | A1:0            | A8                      |
| 7            | A0:7            | A7                      |
| 6            | A0:6            | A6                      |
| 5            | A0:5            | A5                      |
| 4            | A0:4            | A4                      |
| 3            | A0:3            | A3                      |
| 2            | A0:2            | A2_D                    |
| 1            | A0:1            | A1_D                    |
| 0            | A0:0            | A0_D                    |

Table 1-4: Address channel group assignments (Cont.)

Table 1–5 lists the probe section and channel assignments for the Data group and the microprocessor signal for each channel connect. By default the Data channel group assignments are displayed in hexadecimal.

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 31           | E3:7            | D63                     |
| 30           | E3:6            | D62                     |
| 29           | E3:5            | D61                     |
| 28           | E3:4            | D60                     |
| 27           | E3:3            | D59                     |
| 26           | E3:2            | D58                     |
| 25           | E3:1            | D57                     |
| 24           | E3:0            | D56                     |
| 23           | E2:7            | D55                     |
| 22           | E2:6            | D54                     |
| 21           | E2:5            | D53                     |
| 20           | E2:4            | D52                     |
| 19           | E2:3            | D51                     |
| 18           | E2:2            | D50                     |
| 17           | E2:1            | D49                     |
| 16           | E2:0            | D48                     |
| 15           | E1:7            | D47                     |
| 14           | E1:6            | D46                     |
| 13           | E1:5            | D45                     |
| 12           | E1:4            | D44                     |
| 11           | E1:3            | D43                     |
| 10           | E1:2            | D42                     |
| 9            | E1:1            | D41                     |
| 8            | E1:0            | D40                     |
| 7            | E0:7            | D39                     |
| 6            | E0:6            | D38                     |
| 5            | E0:5            | D37                     |
| 4            | E0:4            | D36                     |
| 3            | E0:3            | D35                     |
| 2            | E0:2            | D34                     |
| 1            | E0:1            | D33                     |
| 0            | E0:0            | D32                     |

Table 1–5: Data channel group assignments

Table 1–6 lists the probe section and channel assignments for the Data\_Lo group and the microprocessor signal for each channel connect. By default the Data\_Lo channel group assignments are displayed in hexadecimal.

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 31           | D3:7            | D31                     |
| 30           | D3:6            | D30                     |
| 29           | D3:5            | D29                     |
| 28           | D3:4            | D28                     |
| 27           | D3:3            | D27                     |
| 26           | D3:2            | D26                     |
| 25           | D3:1            | D25                     |
| 24           | D3:0            | D24                     |
| 23           | D2:7            | D23                     |
| 22           | D2:6            | D22                     |
| 21           | D2:5            | D21                     |
| 20           | D2:4            | D20                     |
| 19           | D2:3            | D19                     |
| 18           | D2:2            | D18                     |
| 17           | D2:1            | D17                     |
| 16           | D2:0            | D16                     |
| 15           | D1:7            | D15                     |
| 14           | D1:6            | D14                     |
| 13           | D1:5            | D13                     |
| 12           | D1:4            | D12                     |
| 11           | D1:3            | D11                     |
| 10           | D1:2            | D10                     |
| 9            | D1:1            | D9                      |
| 8            | D1:0            | D8                      |
| 7            | D0:7            | D7                      |
| 6            | D0:6            | D6                      |
| 5            | D0:5            | D5                      |
| 4            | D0:4            | D4                      |
| 3            | D0:3            | D3                      |

Table 1–6: Data\_Lo channel group assignments

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 2            | D0:2            | D2                      |
| 1            | D0:1            | D1                      |
| 0            | D0:0            | D0                      |

Table 1–6: Data\_Lo channel group assignments (Cont.)

Table 1–7 lists the probe section and channel assignments for the Control group and the microprocessor signal for each channel connect. The symbol table file name is SOCKET7\_Ctrl. By default the Control channel group assignments are displayed as symbols.

 Table 1–7: Control channel group assignments

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 14           | C0:7            | D/P#                    |
| 13           | C3:0            | INIT                    |
| 12           | C2:0            | RESET_L                 |
| 11           | C3:6            | PRDY                    |
| 10           | C3:5            | BUSCHK#                 |
| 9            | C2:5            | SMIACT#                 |
| 8            | C2:6            | LOCK#                   |
| 7            | C0:6            | SCYC                    |
| 6            | CLK2            | LAST_D                  |
| 5            | C0:4            | AHOLD                   |
| 4            | C2:2            | HLDA                    |
| 3            | C2:1            | BOFF#                   |
| 2            | C2:7            | M/IO#                   |
| 1            | C3:7            | D/C#                    |
| 0            | C3:3            | LAST_D                  |

# Indicates the channel is asserted low.

Table 1–8 lists the probe section and channel assignments for the Data Size group and the microprocessor signal for each channel connect. By default the Data Size channel group assignments are not displayed.

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 7            | C1:7            | BE7#                    |
| 6            | C1:6            | BE6#                    |
| 5            | C1:5            | BE5#                    |
| 4            | C1:4            | BE4#                    |
| 3            | C1:3            | BE3#                    |
| 2            | C1:2            | BE2#                    |
| 1            | C1:1            | BE1#                    |
| 0            | C0:0            | BE0#                    |

Table 1–8: Data Size channel group assignments

# Indicates the channel is asserted LOW.

Table 1–9 lists the probe section and channel assignments for the Cache group and the microprocessor signal for each channel connect. By default the Cache channel group assignments are not displayed.

Table 1–9: Cache channel group assignments

| Bit<br>order |      | Socket 7<br>signal name |
|--------------|------|-------------------------|
|              | C0:5 | CACHE#                  |

# Indicates the channel is asserted LOW.

Table 1–10 lists the probe section and channel assignments for the Misc group and the microprocessor signal for each channel connect. By default the Misc channel group assignments are not displayed.

Table 1–10: Misc channel group assignments

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 3            | CLK3            | CLK                     |
| 2            | C2:3            | ADS#                    |
| 1            | C3:2            | NA#                     |

| Bit<br>order | Section:channel | Socket 7<br>signal name |
|--------------|-----------------|-------------------------|
| 0            | C3:4            | BRDY#                   |

Table 1–10: Misc channel group assignments (Cont.)

# Indicates the channel is asserted LOW.

Table 1–11 lists the probe section and channel assignments for the clock probes and the Socket 7 signal to which each channel connects.

| Section:channel | Socket 7<br>signal name | Description |
|-----------------|-------------------------|-------------|
| CLK:0           | DVALID_D                |             |
| CLK:1           | PIPE_D                  |             |
| CLK:2           | LAST_D                  |             |
| CLK:3           | CLK                     |             |
| C2:0            | RESET_L                 |             |
| C2:1            | BOFF#                   |             |
| C2:2            | HLDA                    |             |
| C2:3            | ADS#                    |             |
| QUAL:0          | Not Used                |             |
| QUAL:1          | Not Used                |             |
| QUAL:2          | Not Used                |             |
| QUAL:3          | Not Used                |             |
|                 |                         |             |

Table 1–11: Clock channel group assignments

# Indicates the channel is asserted low.

Acquisition Setup. The support will affect the logic analyzer setup menus and submenus by modifying existing fields and adding micro-specific fields.

The TMS 109A Socket 7 microprocessor support will add the selections SOCKET7\_ to the Load Support Package dialog box, located under the File pulldown menu. The SOCKET7\_T supports timing.

Once the TMS 109A Socket 7 support has been loaded, the Custom clocking mode selection in the module Setup menu is also enabled.

Table 1–12 lists channel groups not required for clocking and disassembly.

Table 1–12: Signals not required for clocking or disassembly

| Signal name | TLA700 Channel |
|-------------|----------------|
| NA#         | C3:2           |
| BRDY#       | C3:4           |
| CACHE#      | C0:5           |

# Indicates the channel is asserted low.

Table 1–13 lists signals on the probe adapter but not acquired.

Table 1–13: Signals on the probe adapter but not acquired

| Signal name | AUX J580 Pin number |
|-------------|---------------------|
| TDI         | 12                  |
| TDO         | 13                  |
| TMS         | 14                  |
| ТСК         | 16                  |
| TRST#       | 18                  |
| INIT        | 1                   |
| R/S#        | 7                   |
| PRDY        | 11                  |

# Indicates the channel is asserted low.

Table 1–14 lists signals not connected to probe adapter.

| Table 1–14: | Signals not | connected to | probe adapter |
|-------------|-------------|--------------|---------------|
|             |             |              |               |

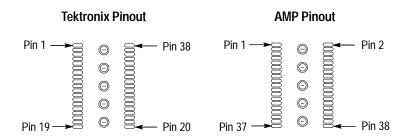
| Signal name | AUX J1700 Pin number |
|-------------|----------------------|
| A20M#       | AK08                 |
| AP          | AK02                 |
| BREQ        | AJ01                 |
| EWBE#       | W03                  |
| IERR#       | P04                  |
| FRCMC#      | Y35                  |

| Signal name | AUX J1700 Pin number |  |
|-------------|----------------------|--|
| ADSC#       | AM02                 |  |
| BRDYC#      | Y03                  |  |
| KEN#        | W05                  |  |

| Table 1–14: Signals not | connected to | probe adapter | · (Cont.) |
|-------------------------|--------------|---------------|-----------|
|                         |              |               |           |

# Indicates the channel is asserted low.

Channel Qual 0:3 is not attached to the probe adapter by default. You may connect this channel to other signals of interest.


### **CPU To Mictor Connections**

To probe the microprocessor you will need to make connections between the CPU and the Mictor pins of the P6434 Mass Termination Probe. Refer to the P6434 Mass Termination Probe manual, Tektronix part number 070-9793-xx, for more information on mechanical specifications. Tables 1–15 through 1–17 show the CPU pin to Mictor pin connections.

Tektronix uses a counterclockwise pin assignment. Pin 1 is located at the top left, and pin 2 is located directly below it. Pin 20 is located on the bottom right, and pin 21 is located directly above it.

AMP uses an odd side-even side pin assignment. Pin-1 is located at the top left, and pin 3 is located directly below it. Pin 2 is located on the top right, and pin 4 is located directly below it (see Figure 1–8).

**NOTE**. When designing Mictor connectors into your system under test, always follow the Tektronix pin assignment.





| Tektronix<br>Mictor A<br>pin number | AMP<br>Mictor A<br>pin number | LA channel | Socket 7<br>signal name | Socket 7<br>pin number |
|-------------------------------------|-------------------------------|------------|-------------------------|------------------------|
| 1                                   | 1                             | GND        | GND                     | GND                    |
| 2                                   | 3                             | GND        | GND                     | GND                    |
| 3                                   | 5                             | CLOCK:0    | DVALID_D                | DERIVED                |
| 4                                   | 7                             | A3:7       | A31                     | AJ-33                  |
| 5                                   | 9                             | A3:6       | A30                     | AM-36                  |
| 6                                   | 11                            | A3:5       | A29                     | AK-34                  |
| 7                                   | 13                            | A3:4       | A28                     | AK-36                  |
| 8                                   | 15                            | A3:3       | A27                     | AG-33                  |
| 9                                   | 17                            | A3:2       | A26                     | AH-34                  |
| 10                                  | 19                            | A3:1       | A25                     | AJ-35                  |
| 11                                  | 21                            | A3:0       | A24                     | AG-35                  |
| 12                                  | 23                            | A2:7       | A23                     | AE-33                  |
| 13                                  | 25                            | A2:6       | A22                     | AH-36                  |
| 14                                  | 27                            | A2:5       | A21                     | AF-34                  |
| 15                                  | 29                            | A2:4       | A20                     | AL-21                  |
| 16                                  | 31                            | A2:3       | A19                     | AK-22                  |
| 17                                  | 33                            | A2:2       | A18                     | AL-23                  |
| 18                                  | 35                            | A2:1       | A17                     | AK-24                  |
| 19                                  | 37                            | A2:0       | A16                     | AL-25                  |
| 20                                  | 38                            | A0:0       | A0_D                    | DERIVED                |
| 21                                  | 36                            | A0:1       | A1_D                    | DERIVED                |
| 22                                  | 34                            | A0:2       | A2_D                    | DERIVED                |
| 23                                  | 32                            | A0:3       | A3                      | AL-35                  |
| 24                                  | 30                            | A0:4       | A4                      | AM-34                  |
| 25                                  | 28                            | A0:5       | A5                      | AK-32                  |
| 26                                  | 26                            | A0:6       | A6                      | AN-33                  |
| 27                                  | 24                            | A0:7       | A7                      | AL-33                  |
| 28                                  | 22                            | A1:0       | A8                      | AM-32                  |
| 29                                  | 20                            | A1:1       | A9                      | AK-30                  |
| 30                                  | 18                            | A1:2       | A10                     | AN-31                  |
| 31                                  | 16                            | A1:3       | A11                     | AL-31                  |
| 32                                  | 14                            | A1:4       | A12                     | AL-29                  |
| 33                                  | 12                            | A1:5       | A13                     | AK-28                  |
| 34                                  | 10                            | A1:6       | A14                     | AL-27                  |
| 35                                  | 8                             | A1:7       | A15                     | AK-26                  |

Table 1–15: CPU to Mictor connections for Mictor A pins

| Tektronix<br>Mictor A<br>pin number | AMP<br>Mictor A<br>pin number | LA channel | Socket 7<br>signal name | Socket 7<br>pin number |
|-------------------------------------|-------------------------------|------------|-------------------------|------------------------|
| 36                                  | 6                             | CLOCK:1    | PIPE_D                  | DERIVED                |
| 37                                  | 4                             | GND        | GND                     | GND                    |
| 38                                  | 2                             | GND        | GND                     | GND                    |
| 39                                  | 39                            | GND        | GND                     | GND                    |
| 40                                  | 40                            | GND        | GND                     | GND                    |
| 41                                  | 41                            | GND        | GND                     | GND                    |
| 42                                  | 42                            | GND        | GND                     | GND                    |
| 43                                  | 43                            | GND        | GND                     | GND                    |
| 44                                  | 44                            | GND        | GND                     | GND                    |

Table 1–15: CPU to Mictor connections for Mictor A pins (Cont.)

Table 1–16: CPU to Mictor connections for Mictor D pins

| Tektronix<br>Mictor D<br>pin number | AMP<br>Mictor D<br>pin number | LA channel | Socket 7<br>signal name | Socket 7<br>pin number |
|-------------------------------------|-------------------------------|------------|-------------------------|------------------------|
| 1                                   | 1                             | GND        | GND                     | GND                    |
| 2                                   | 3                             | GND        | GND                     | GND                    |
| 3                                   | 5                             | NC         | NC                      | NC                     |
| 4                                   | 7                             | D3:7       | D31                     | C-17                   |
| 5                                   | 9                             | D3:6       | D30                     | D-20                   |
| 6                                   | 11                            | D3:5       | D29                     | C-19                   |
| 7                                   | 13                            | D3:4       | D28                     | D-22                   |
| 8                                   | 15                            | D3:3       | D27                     | C-21                   |
| 9                                   | 17                            | D3:2       | D26                     | D-24                   |
| 10                                  | 19                            | D3:1       | D25                     | C-23                   |
| 11                                  | 21                            | D3:0       | D24                     | C-27                   |
| 12                                  | 23                            | D2:7       | D23                     | D-26                   |
| 13                                  | 25                            | D2:6       | D22                     | A-31                   |
| 14                                  | 27                            | D2:5       | D21                     | C-29                   |
| 15                                  | 29                            | D2:4       | D20                     | B-30                   |
| 16                                  | 31                            | D2:3       | D19                     | D-28                   |
| 17                                  | 33                            | D2:2       | D18                     | A-33                   |
| 18                                  | 35                            | D2:1       | D17                     | C-31                   |
| 19                                  | 37                            | D2:0       | D16                     | B-32                   |
| 20                                  | 38                            | D0:0       | D0                      | K-34                   |

| Tektronix<br>Mictor D<br>pin number | AMP<br>Mictor D<br>pin number | LA channel | Socket 7<br>signal name | Socket 7<br>pin number |
|-------------------------------------|-------------------------------|------------|-------------------------|------------------------|
| 21                                  | 36                            | D0:1       | D1                      | G-35                   |
| 22                                  | 34                            | D0:2       | D2                      | J-35                   |
| 23                                  | 32                            | D0:3       | D3                      | G-33                   |
| 24                                  | 30                            | D0:4       | D4                      | F-36                   |
| 25                                  | 28                            | D0:5       | D5                      | F-34                   |
| 26                                  | 26                            | D0:6       | D6                      | E-35                   |
| 27                                  | 24                            | D0:7       | D7                      | E-33                   |
| 28                                  | 22                            | D1:0       | D8                      | D-34                   |
| 29                                  | 20                            | D1:1       | D9                      | C-37                   |
| 30                                  | 18                            | D1:2       | D10                     | C-35                   |
| 31                                  | 16                            | D1:3       | D11                     | B-36                   |
| 32                                  | 14                            | D1:4       | D12                     | D-32                   |
| 33                                  | 12                            | D1:5       | D13                     | B-34                   |
| 34                                  | 10                            | D1:6       | D14                     | C-33                   |
| 35                                  | 8                             | D1:7       | D15                     | A-35                   |
| 36                                  | 6                             | CLOCK:2    | LAST_D                  | DERIVED                |
| 37                                  | 4                             | GND        | GND                     | GND                    |
| 38                                  | 2                             | GND        | GND                     | GND                    |
| 39                                  | 39                            | GND        | GND                     | GND                    |
| 40                                  | 40                            | GND        | GND                     | GND                    |
| 41                                  | 41                            | GND        | GND                     | GND                    |
| 42                                  | 42                            | GND        | GND                     | GND                    |
| 43                                  | 43                            | GND        | GND                     | GND                    |
| 44                                  | 44                            | GND        | GND                     | GND                    |

Table 1–16: CPU to Mictor connections for Mictor D pins (Cont.)

Table 1–17: CPU to Mictor connections for Mictor E pins

| Tektronix<br>Mictor E<br>pin number | AMP<br>Mictor E<br>pin number | LA channel | Socket 7<br>signal name | Socket 7<br>pin number |
|-------------------------------------|-------------------------------|------------|-------------------------|------------------------|
| 1                                   | 1                             | GND        | GND                     | GND                    |
| 2                                   | 3                             | GND        | GND                     | GND                    |
| 3                                   | 5                             | QUAL:3     | NC                      | NC                     |
| 4                                   | 7                             | E3:7       | D63                     | N-03                   |
| 5                                   | 9                             | E3:6       | D62                     | M-04                   |

| 6<br>7 | 11<br>13 | E3:5   | D61  |      |
|--------|----------|--------|------|------|
|        |          |        | וסטן | L-03 |
|        | 1        | E3:4   | D60  | L-05 |
| 8      | 15       | E3:3   | D59  | K-04 |
| 9      | 17       | E3:2   | D58  | J-05 |
| 10     | 19       | E3:1   | D57  | J-03 |
| 11     | 21       | E3:0   | D56  | H-04 |
| 12     | 23       | E2:7   | D55  | G-03 |
| 13     | 25       | E2:6   | D54  | E-01 |
| 14     | 27       | E2:5   | D53  | G-05 |
| 15     | 29       | E2:4   | D52  | E-03 |
| 16     | 31       | E2:3   | D51  | F-04 |
| 17     | 33       | E2:2   | D50  | D-02 |
| 18     | 35       | E2:1   | D49  | E-05 |
| 19     | 37       | E2:0   | D48  | D-04 |
| 20     | 38       | E0:0   | D32  | C-15 |
| 21     | 36       | E0:1   | D33  | D-16 |
| 22     | 34       | E0:2   | D34  | C-13 |
| 23     | 32       | E0:3   | D35  | D-14 |
| 24     | 30       | E0:4   | D36  | C-11 |
| 25     | 28       | E0:5   | D37  | D-12 |
| 26     | 26       | E0:6   | D38  | C-09 |
| 27     | 24       | E0:7   | D39  | D-10 |
| 28     | 22       | E1:0   | D40  | D-08 |
| 29     | 20       | E1:1   | D41  | A-05 |
| 30     | 18       | E1:2   | D42  | E-09 |
| 31     | 16       | E1:3   | D43  | B-04 |
| 32     | 14       | E1:4   | D44  | D-06 |
| 33     | 12       | E1:5   | D45  | C-05 |
| 34     | 10       | E1:6   | D46  | E-07 |
| 35     | 8        | E1:7   | D47  | C-03 |
| 36     | 6        | QUAL:2 | NC   | NC   |
| 37     | 4        | GND    | GND  | GND  |
| 38     | 2        | GND    | GND  | GND  |
| 39     | 39       | GND    | GND  | GND  |
| 40     | 40       | GND    | GND  | GND  |

Table 1–17: CPU to Mictor connections for Mictor E pins (Cont.)

| Tektronix<br>Mictor E<br>pin number | AMP<br>Mictor E<br>pin number | LA channel | Socket 7<br>signal name | Socket 7<br>pin number |
|-------------------------------------|-------------------------------|------------|-------------------------|------------------------|
| 41                                  | 41                            | GND        | GND                     | GND                    |
| 42                                  | 42                            | GND        | GND                     | GND                    |
| 43                                  | 43                            | GND        | GND                     | GND                    |

Table 1–17: CPU to Mictor connections for Mictor E pins (Cont.)

Table 1–18: CPU to Mictor connections for Mictor C pins

| Tektronix<br>Mictor C<br>pin number | AMP<br>Mictor C<br>pin number | LA channel | Socket 7<br>signal name | Socket 7<br>pin number |
|-------------------------------------|-------------------------------|------------|-------------------------|------------------------|
| 1                                   | 1                             | GND        | GND                     | GND                    |
| 2                                   | 3                             | GND        | GND                     | GND                    |
| 3                                   | 5                             | CLOCK:3    | CLK                     | AK-18                  |
| 4                                   | 7                             | C3:7       | D/C#                    | AK-04                  |
| 5                                   | 9                             | C3:6       | PRDY                    | AC-05                  |
| 6                                   | 11                            | C3:5       | BUSCHK#                 | AL-07                  |
| 7                                   | 13                            | C3:4       | BRDY#                   | DERIVED                |
| 8                                   | 15                            | C3:3       | W/R#                    | DERIVED                |
| 9                                   | 17                            | C3:2       | NA#                     | Y-05                   |
| 10                                  | 19                            | C3:1       | BRDY#=                  | X-04                   |
| 11                                  | 21                            | C3:0       | INIT                    | AA-33                  |
| 12                                  | 23                            | C2:7       | M/IO <sup>#</sup>       | T-04                   |
| 13                                  | 25                            | C2:6       | LOCK <sup>#</sup>       | AH-04                  |
| 14                                  | 27                            | C2:5       | SMIACT#                 | AG-03                  |
| 15                                  | 29                            | C2:4       | W/R#=                   | AM-06                  |
| 16                                  | 31                            | C2:3       | ADS#                    | DERIVED                |
| 17                                  | 33                            | C2:2       | HLDA                    | DERIVED                |
| 18                                  | 35                            | C2:1       | BOFF#                   | DERIVED                |
| 19                                  | 37                            | C2:0       | RESET_L                 | DERIVED                |
| 20                                  | 38                            | C0:0       | RESET_L=                | AK-20                  |
| 21                                  | 36                            | C0:1       | BOFF#=                  | Z-04                   |
| 22                                  | 34                            | C0:2       | HLDA=                   | AJ-3                   |
| 23                                  | 32                            | C0:3       | ADS#=                   | AJ-05                  |
| 24                                  | 30                            | C0:4       | AHOLD                   | V-04                   |
| 25                                  | 28                            | C0:5       | CACHE#                  | DERIVED                |
| 26                                  | 26                            | C0:6       | SCYS                    | AL-17                  |

| Tektronix<br>Mictor C<br>pin number | AMP<br>Mictor C<br>pin number | LA channel | Socket 7<br>signal name | Socket 7<br>pin number |
|-------------------------------------|-------------------------------|------------|-------------------------|------------------------|
| 27                                  | 24                            | C0:7       | D/P <sup>#</sup>        | DERIVED                |
| 28                                  | 22                            | C1:0       | BE0 <sup>#</sup>        | AL-09                  |
| 29                                  | 20                            | C1:1       | BE1 <sup>#</sup>        | AK-10                  |
| 30                                  | 18                            | C1:2       | BE2#                    | AL-11                  |
| 31                                  | 16                            | C1:3       | BE3#                    | AK-12                  |
| 32                                  | 14                            | C1:4       | BE4 <sup>#</sup>        | AL-13                  |
| 33                                  | 12                            | C1:5       | BE5 <sup>#</sup>        | AK-14                  |
| 34                                  | 10                            | C1:6       | BE6 <sup>#</sup>        | AL-15                  |
| 35                                  | 8                             | C1:7       | BE7#                    | AK-16                  |
| 36                                  | 6                             | NC         | -                       | NC                     |
| 37                                  | 4                             | NC         | GND                     | GND                    |
| 38                                  | 2                             | NC         | GND                     | GND                    |
| 39                                  | 39                            | GND        | GND                     | GND                    |
| 40                                  | 40                            | GND        | GND                     | GND                    |
| 41                                  | 41                            | GND        | GND                     | GND                    |
| 42                                  | 42                            | GND        | GND                     | GND                    |
| 43                                  | 43                            | GND        | GND                     | GND                    |

Table 1–18: CPU to Mictor connections for Mictor C pins (Cont.)

<sup>#</sup> Indicates the channel is asserted low.

= Indicates double probing

# **Operating Basics**

## Setting Up the Support

This section provides information on how to set up the support. Information covers the following topics:

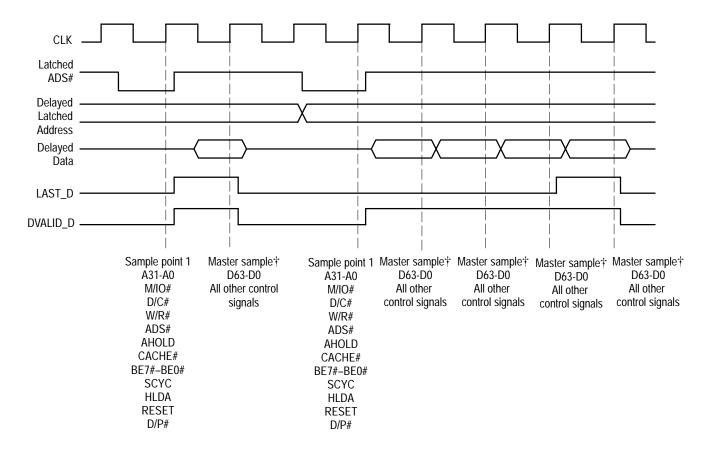
- Channel group definitions
- Clocking options
- Symbol table files

Remember that the information in this section is specific to the operations and functions of the TMS 109A Socket 7 support on any Tektronix logic analyzer for which it can be purchased. Information on basic operations describes general tasks and functions.

Before you acquire and disassemble data, you need to load the support and specify setups for clocking and triggering as described in the information on basic operations. The support provides default values for each of these setups, but you can change them as needed.

### **Channel Group Definitions**

The software automatically defines channel groups for the support. The channel groups for the Socket 7 support are Address, Data, Data\_Lo, Control, DataSize, Cache, and Misc.

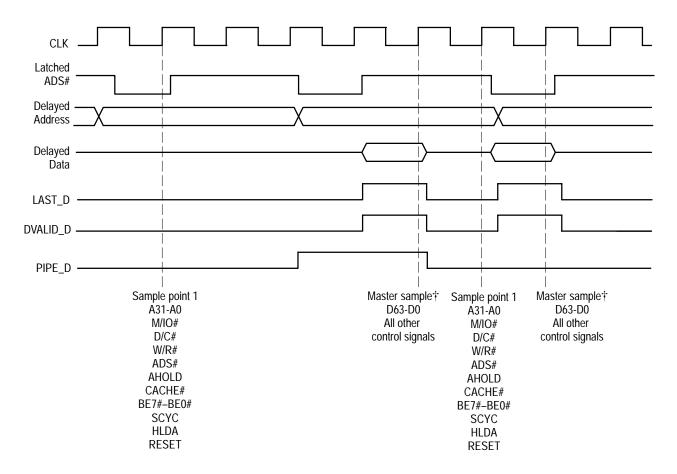

## **Clocking Options**

**Custom Clocking** A special clocking program is loaded to the module every time you load the SOCKET7\_ support. This special clocking is called Custom.

With Custom clocking, the module logs in signals from multiple groups of channels at different times as they become valid on the Socket 7 bus. The module then sends all the logged-in signals to the trigger machine and to the memory of the module for storage.

In Custom clocking, the module clocking state machine (CSM) generates one master sample for each microprocessor bus cycle, no matter how many clock cycles are contained in the bus cycle.

Figure 2–1 shows two typical bus cycles: a single cycle transfer followed by a burst transfer. The ADS#, Address and Data signal forms are delayed by two CLK cycles. This diagram also shows the timing relationships of LAST\_D and DVALID\_D, the signals synthesized by sequential logic in the PALs.




†Channels not set up in a channel group by the TMS 109A Socket 7 software are logged with the Master sample.

### Figure 2–1: Nonpipelined single and Burst Transfer cycles

Relative to real time, nondelayed Socket 7 microprocessor signals, the first sample point in a cycle occurs two clocks after the ADS# signal is asserted. The second (and subsequent, if the cycle is a burst) sample point occurs two clocks after the BRDY# or BRDYC# signal.

Figure 2–2 shows a single cycle transfer pipelined into another single cycle transfer. The ADS#, Address and Data signal forms are delayed by two CLK cycles. This diagram also shows the timing relationships of D\_LAST,



DVALID\_D, and PIPE\_D, which are the signals synthesized by sequential logic in the PALs.

†Channels not set up in a channel group by the TMS 109A Socket 7 software are logged with the Master sample.

### Figure 2–2: Pipelined cycles

|                 | With relationship to real-time, nondelayed, Socket 7 microprocessor signals, the first sample point in a cycle occurs two clocks after the ADS# signal is asserted. When the ADS# signal is asserted again to pipeline a second cycle into the first, the first sample point for that second cycle occurs three clocks after the last BRDY# or BRDYC# signal is returned from the first outstanding cycle. |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ClockingOptions | The clocking algorithm for the Socket 7 microprocessor has two variations:<br>Alternate Bus Master Cycles Excluded and Alternate Bus Master Cycles<br>Included.                                                                                                                                                                                                                                            |

Alternate Bus Master Cycles Excluded. Whenever the HLDA signal is high, no bus cycles are logged in. Only bus cycles driven by the microprocessor (HLDA low) will be logged in. Backoff cycles (caused by the BOFF# signal) are stored.

Alternate Bus Master Cycles Included. All bus cycles, including alternate bus master cycles and backoff cycles, are logged in.

When the HLDA signal is high, the microprocessor has given up the bus to an alternate device. The design of the Socket 7 microprocessor system affects what data will be logged in. The module only samples the data at the pins of the microprocessor. To properly log in bus activity, any buffers between the microprocessor and the alternate bus master must be enabled and pointing at the Socket 7 microprocessor.

There are three possible Socket 7 microprocessor system designs and clocking interactions when an alternate bus master has control of the bus. The three different possibilities are listed below (in each case, the HLDA signal is logged in as a high level):

- If the alternate bus master drives the same control lines as the Socket 7 microprocessor, and the Socket 7 microprocessor sees these signals, the bus activity is logged in like normal bus cycles except that the HLDA signal is high.
- If none of the control lines are driven or if the Socket 7 microprocessor can not see them, the module will still clock in an alternate bus master cycle. The information on the bus, one clock prior to the HLDA signal going low, is logged in. If the ADS# signal goes low on the same clock when the HLDA signal goes low, the address that gets logged in will be the next address, not the address that occurred one clock before the HLDA signal went low.
- If some of the Socket 7 microprocessor control lines are visible (but not all), the module logs in the signals it determines are valid from the control signals and logs in the remaining bus signals one clock cycle prior to the HLDA signal going low. If the ADS# signal goes low on the same clock that the HLDA signal goes low, the next address will be logged instead of the previously saved address.

When the BOFF# signal goes low (active), a backoff cycle has been requested, and the Socket 7 microprocessor gives up the bus on the next clock cycle. The module aborts the bus cycle that it is currently logging in (the Socket 7 microprocessor will restart this cycle once the BOFF# signal goes high). A backoff cycle will be logged in using one of the three interactions described for the HLDA signal (except that the BOFF# signal is stored as a low-level signal in each of the cases).

## **Mode Differences**

|                | The Socket 7 microprocessor can operate in either Component or Chip Set mode.                                                                                                                                                                                                                                           |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Component Mode | In Component mode (stand alone), the microprocessor interfaces directly to the system bus.                                                                                                                                                                                                                              |
| Chip Set Mode  | The Socket 7 microprocessor, C5C cache controller, and the C8C cache memory (SRAM) can be combined to form a chip set or enhanced design. The two cache devices connect to the system bus and a memory bus controller interfaces to the microprocessor and cache devices.                                               |
|                | The behavior of the Socket 7 microprocessor is affected when operating in Chip Set mode. The TMS 109A Socket 7 software and probe adapter still supports the Socket 7 microprocessor in this mode.                                                                                                                      |
|                | There are also two new signals: BRDYC# (pin L3) and ADSC# (pin N4).                                                                                                                                                                                                                                                     |
|                | In Component mode, the BRDYC# signal is seen as a "no connect" pin. The TMS 109A Socket 7 probe adapter uses the BRDYC# signal for clocking when it is active. The probe adapter has a pullup resistor on this line to hold it inactive when the Socket 7 is in Chip-Set mode. The BRDYC# signal can be probed on C1:0. |
|                | In Component mode, the ADSC# signal is seen as a "no connect" pin and is not used for clocking by the probe adapter.                                                                                                                                                                                                    |
| Symbols        |                                                                                                                                                                                                                                                                                                                         |

The TMS 109A Socket 7 support supplies one symbol table file. The SOCK-ET7\_Ctrl file replaces specific Control channel group values with symbolic values when Symbolic is the radix for the channel group.

Table 2–1 shows the name, bit pattern, and meaning for the symbols in the file SOCKET7\_Ctrl, the Control channel group symbol table.

| Table 2-1: Control | ol group symbol | table definitions |
|--------------------|-----------------|-------------------|
|--------------------|-----------------|-------------------|

|         | Control group value                 |                           |                                 |                                 |                               |
|---------|-------------------------------------|---------------------------|---------------------------------|---------------------------------|-------------------------------|
| Symbol  | PRDY<br>D/P# BU<br>INIT<br>IRESET_L | SCHK#<br>SMIACT#<br>LOCK# | SCYC<br>LAST_D<br>AHOLD<br>HLDA | BOFF3#<br>M/IO#<br>D/C#<br>W/R# | Meaning                       |
| RESET   | X X 1 X X                           | X X                       | ХХХХ                            | X X X X                         | Reset                         |
| P_FETCH | 0 X 0 X X                           | X 1                       | X X X O                         | 1 1 0 0                         | Primary processor opcode read |
| D_FETCH | 1 X O X X                           | X 1                       | X X X O                         | 1 1 0 0                         | Dual processor opcode read    |

|              | Control                                                |                                                        |                                      |
|--------------|--------------------------------------------------------|--------------------------------------------------------|--------------------------------------|
| Symbol       | PRDY<br>D/P# BUSCHK#<br>INIT SMIACT#<br>IRESET_L LOCK# | SCYC BOFF3#<br>LAST_D M/IO#<br>AHOLD D/C#<br>HLDA W/R# | Meaning                              |
| FETCH*       | X X 0 X X X 1                                          | X X X 0 1 1 0 0                                        | Opcode read                          |
| P_LOCK_RD    | 0 X 0       X X X 0                                    | X X X 0 1 X 1 0                                        | Primary processor locked read cycle  |
| D_LOCK_RD    | 1 X O X X X O                                          | X X X 0 1 X 1 0                                        | Dual processor locked read cycle     |
| LOCK_RD*     | X X O X X X O                                          | X X X 0 1 X 1 0                                        | Locked read cycle                    |
| P_LOCK_WR    | 0 X 0 X X X 0                                          | X X X 0 1 X 1 1                                        | Primary processor locked write cycle |
| D_LOCK_WR    | 1 X O X X X O                                          | X X X 0 1 X 1 1                                        | Dual processor locked write cycle    |
| LOCK_WR*     | X X O X X X O                                          | X X X 0 1 X 1 1                                        | Locked write cycle                   |
| P_MEM_RD     | 0 X 0 X X X X                                          | X X X 0 1 1 1 0                                        | Primary processor nonopcode read     |
| D_MEM_RD     | 1 X O X X X X                                          | X X X 0 1 1 1 0                                        | Dual processor nonopcode read        |
| MEM_RD*      | X X O X X X X                                          | X X X 0 1 1 1 0                                        | Read from memory, nonopcode          |
| P_MEM_WR     | 0 X 0 X X X X                                          | X X X 0 1 1 1 1                                        | Primary processor write to memory    |
| D_MEM_WR     | 1 X O X X X X                                          | X X X 0 1 1 1 1                                        | Dual processor write to memory       |
| MEM_WR*      | X X O X X X X                                          | X X X 0 1 1 1 1                                        | Write to memory                      |
| P_I/O_RD     | 0 X 0 X X X X                                          | X X X 0 1 0 1 0                                        | Primary processor I/O read cycle     |
| D_I/O_RD     | 1 X O X X X X                                          | X X X 0 1 0 1 0                                        | Dual processor I/O read cycle        |
| I/0_RD*      | X X O X X X X                                          | X X X 0 1 0 1 0                                        | I/O read cycle                       |
| P_I/O_WR     | 0 X 0 X X X X                                          | X X X 0 1 0 1 1                                        | Primary processor I/O write cycle    |
| D_I/O_WR     | 1 X O X X X X                                          | X X X 0 1 0 1 1                                        | Dual processor I/O write cycle       |
| I/O_WR*      | X X O X X X X                                          | X X X 0 1 0 1 1                                        | I/O write cycle                      |
| P_MEM_R/W*   | 0 X 0 X X X X                                          | X X X 0 1 1 1 X                                        | Any primary processor read or write  |
| D_MEM_R/W*   | 1 X O X X X X                                          | X X X 0 1 1 1 X                                        | Any dual processor read or write     |
| MEM_R/W*     | X X O X X X X                                          | X X X 0 1 1 1 X                                        | Any memory read or write cycle       |
| P_I/0_R/W*   | 0 X 0 X X X X                                          | X X X 0 1 0 1 X                                        | Any primary processor I/O cycle      |
| D_I/0_R/W*   | 1 X O X X X X                                          | X X X 0 1 0 1 X                                        | Any dual processor I/O cycle         |
| I/O_R/W*     | X X O X X X X                                          | X X X 0 1 0 1 X                                        | Any I/O read or write cycle          |
| P_READ*      | 0 X 0 X X X X                                          | X X X 0 1 X 1 0                                        | Any primary processor read cycle     |
| D_READ*      | 1 X O X X X X                                          | X X X 0 1 X 1 0                                        | Any dual processor read cycle        |
| READ*        | X X O X X X X                                          | X X X 0 1 X 1 0                                        | Any read cycle                       |
| P_WRITE*     | 0 X 0     X X X X                                      | X X X 0 1 X 1 1                                        | Any primary processor write cycle    |
| <br>D_WRITE* | 1 X O X X X X                                          | X X X 0 1 X 1 1                                        | Any dual processor write cycle       |
| WRITE*       | X X O X X X X                                          | X X X 0 1 X 1 1                                        | Any write cycle                      |
| P_INT_ACK    | 0 X 0     X X X X                                      | X X X 0 1 0 0 0                                        | Primary processor int. acknowledge   |

### Table 2–1: Control group symbol table definitions (cont.)

|            | Control                                                |                                                       |                                    |
|------------|--------------------------------------------------------|-------------------------------------------------------|------------------------------------|
| Symbol     | PRDY<br>D/P# BUSCHK#<br>INIT SMIACT#<br>IRESET_L LOCK# | SCYC BOFF3#<br>LAST_D M/O#<br>AHOLD D/C#<br>HLDA W/R# | Meaning                            |
| D_INT_ACK  | 1 X 0 X X X X                                          | X X X 0 1 0 0 0                                       | Dual processor int. acknowledge    |
| INT_ACK*   | X X 0 X X X X                                          | X X X 0 1 0 0 0                                       | Interrupt acknowledge cycle        |
| P_SPECIAL  | 0 X 0 X X X X                                          | X X X 0 1 0 0 1                                       | Primary processor special cycle    |
| D_SPECIAL  | 1 X 0 X X X X                                          | X X X 0 1 0 0 1                                       | Dual processor special cycle       |
| SPECIAL*   | X X 0 X X X X                                          | X X X 0 1 0 0 1                                       | Special cycle                      |
| P_RESERVE  | 0 X 0 X X X X                                          | X X X 0 1 1 0 1                                       | Primary processor reserved         |
| D_RESERVE  | 1 X 0 X X X X                                          | X X X 0 1 1 0 1                                       | Dual processor reserved            |
| RESERVE*   | X X 0 X X X X                                          | X X X 0 1 1 0 1                                       | Reserved                           |
| ALT_B_MTR  | X X 0 X X X X                                          | X X X 1 X X X X                                       | Alternate bus master cycle         |
| BOFF       | X X 0 X X X X                                          | X X X X 0 X X X                                       | Backoff cycle                      |
| P_BUSCHCK  | 0 X 0 X 0 X X                                          | X X X 0 1 X X X                                       | Primary processor buscheck         |
| D_BUSCHCK  | 1 X 0 X 0 X X                                          | X X X 0 1 X X X                                       | Dual processor buscheck            |
| BUSCHCK*   | 0 X 0 X 0 X X                                          | X X X 0 1 X X X                                       | Buscheck                           |
| P_LOCKED   | 0 X 0 X 1 X 0                                          | X X X X X X X X                                       | Any primary processor locked cycle |
| D_LOCKED   | 1 X 0 X 1 X 0                                          | X X X X X X X X                                       | Any dual processor locked cycle    |
| LOCKED*    | X X 0 X 1 X 0                                          | X X X X X X X X X                                     | Any locked cycle                   |
| P_SPLTCYC* | 0 X 0 X 1 X 0                                          | 1 X X X X X X X                                       | Primary processor split cycle      |
| D_SPLTCYC* | 1 X 0 X 1 X 0                                          | 1 X X X X X X X                                       | Dual processor split cycle         |
| SPLTCYC*   | X X 0 X 1 X 0                                          | 1 X X X X X X X                                       | Split cycle                        |
| P_SMM*     | 0 X 0 X X 0 X                                          | X X X X X X X X X                                     | The primary processor is in smm    |
| D_SMM*     | 1 X 0 X X 0 X                                          | X X X X X X X X X                                     | The dual processor is in smm       |
| SMM*       | X X 0 X X 0 X                                          | X X X X X X X X X                                     | Either processor is in smm         |
| PRIMARY*   | 0 X X X X X X                                          | X X X X X X X X X                                     | Any primary processor cycle        |
| DUAL*      | 1 X X X X X X                                          | X X X X X X X X X                                     | Any dual processor cycle           |

Table 2–1: Control group symbol table definitions (cont.)

Symbols used only for triggering; they are not displayed.

Information on basic operations describes how to use symbolic values for triggering and for displaying other channel groups symbolically, such as the Address channel group.

## Acquiring and Viewing Disassembled Data

This section describes how to acquire data and view it disassembled. Information covers the following topics and tasks:

- Acquire data
- View disassembled data in various display formats
- Cycle type labels
- Change the way data is displayed
- Change disassembled cycles with the mark cycles function

**NOTE**. The disassembly software is optimized to decode instruction streams and bus activities from Intel microprocessors and AMD-K6-2; therefore, the disassembler may not support unique characteristics of other manufacturers. However, you can reliably conduct timing analysis of nonIntel Socket 7 processors and use the high-level source debug capabilities of a Tektronix logic analyzer. Consult your Tektronix field office for future enhancements.

### **Acquiring Data**

Once you load the SOCKET7\_ support, choose a clocking mode, and specify the trigger, you are ready to acquire and disassemble data.

If you have any problems acquiring data, refer to information on basic operations in your online help or *Appendix A: Error Messages and Disassembly Problems* in the basic operations user manual.

### Viewing Disassembled Data

You can view disassembled data in five display formats: Timing, Hardware, Software, Control Flow, and Subroutine. The information on basic operations describes how to select the disassembly display formats.

**NOTE**. Selections in the Disassembly property page (the Disassembly Format Definition overlay) must be set correctly for your acquired data to be disassembled correctly. Refer to Changing How Data is Displayed on page 2–17.

The default display format shows the Address, Data, Data\_Lo, and Control channel groups for each sample of acquired data. The Data and Data\_Lo groups are shown in one column.

The disassembler displays special characters and strings in the instruction mnemonics to indicate significant events. Table 2–2 shows these special characters and strings, and gives a definition of what they represent.

| Character or string displayed | Meaning                                                                                                                                                                                                                  |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| #                             | The pound sign is used to indicate an immediate value. This is somewhat dependent upon the target microprocessor assembler notation.                                                                                     |
| >                             | There is insufficient room on the screen to show all available data.                                                                                                                                                     |
| >>                            | The instruction was manually marked as a program fetch.                                                                                                                                                                  |
| »                             | This instruction fetch cycle has been manually marked by the user (TLA 700).                                                                                                                                             |
| t                             | This indicates the given number is in decimal. Example: #12t (for 0xC in hexadecimal)                                                                                                                                    |
| ****                          | Indicates there is insufficient data available for complete<br>disassembly of the instruction; the number of asterisks<br>indicates the width of the data that is unavailable. Each two<br>asterisks represent one byte. |
| *                             | A single asterisk at the beginning of the instruction implies<br>the cycle is an out–of–order fetch. It is located in the first<br>character to the left of the mnemonic.                                                |
| C                             | A lower–case "c" is used to indicate a cache invalidation cycle. It is located in the second character to the left of the mnemonic.                                                                                      |
| -                             | A dash "" is used to indicated that this cycle was issued by<br>the "other" microprocessor, (Primary, or Dual, based on user<br>selection).                                                                              |
| (FLUSH)                       | The instruction has been flushed from the microprocessor's internal instruction queue.                                                                                                                                   |
| (16) or (32)                  | Indicates that the fetch is from a 16- or 32-bit code segment size, and disassembled accordingly. If the mnemonic fills the entire column width, the (16) or (32) will not be displayed.                                 |
| SMM                           | Indicates a System management mode cycle.                                                                                                                                                                                |
| (MMX)                         | Indicates an MMX instruction; appears at the end of the mnemonic.                                                                                                                                                        |
| (3DNow!)                      | Indicates an 3DNow! instruction; appears at the end of the mnemonic.                                                                                                                                                     |

Table 2–2: Meaning of special characters in the display

| Character or string displayed | Meaning                                                                                                                                                                                                                                                                                                                     |  |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ??                            | This notation will be placed in a mnemonic field if the disassembler views the operand invalid for the instruction. For example, there is not a control register named "CR7". Thus if the operand byte would indicate the register "CR7", "(??)" will be placed to the right of the instruction string: "MOV CR7,EAX (??)". |  |
| <more></more>                 | For Software Mode, if there are more than eight lines of text<br>to be displayed for a cycle due to out-of-order fetching, the<br>eighth line will have the text string " <more>" displayed at the<br/>right. This text WILL overlay any other text on the line (it has<br/>the highest priority).</more>                   |  |

Table 2-2: Meaning of special characters in the display (cont.)

Logic analyzer software does not allow more than 32 channels in each channel group. Therefore, two channel groups are used to acquire 64-bit wide Socket 7 microprocessor data.

To handle the display of disassembled data from both data groups, the disassembler may display more than one line for each data sample. For samples with two display lines, data displayed under the Data column of the first line is from the Data\_Lo group (D31-0); data displayed under the Data column of the second line is from the Data group (D63-32). Figure 2–3 on page 2–14 shows examples of multiple display lines used to display Data\_Lo and Data group information.

The disassembler synthesizes the A2-A0 signals.

**Aborting Lengthy Disassembly.** When acquiring data from two microprocessors, the disassembler might take a long time to display disassembled data. This could be caused by the combination of selections in the Trace Processor and Other Processor fields in the Disassembly property page (Disassembly Format Definition overlay).

An example where this might occur is when the Trace Processor field is set to DUAL, and the Other Processor field is set to Suppress. If the acquisition data only contains data from the Primary microprocessor, then the disassembler might take a long time to display disassembled cycle types or instruction mnemonics.

## Timing-Waveform Display<br/>FormatIn the Timing-Waveform display format, the display is set up to show the<br/>following waveforms:

| CLK         | D/C#   | RESET |
|-------------|--------|-------|
| Address     | M/IO#  | HLDA  |
| DataData_Lo | NA#    | BOFF# |
| ADS#        | CACHE# | AHOLD |
| D/P#        | BRDY#  |       |
| W/R#        | LOCK#  |       |

**Hardware Display Format** In Hardware display format, the disassembler displays certain cycle type labels in parentheses (see Figure 2–9 on page 2–23). Table 2–3 shows these cycle type labels and gives a definition of the cycle they represent. Reads to interrupt and exception vectors will be labeled with the vector name.

The disassembler always displays at least one line of information. Because fetches should have valid data for the Data and Data\_Lo groups, most fetches should use at least two display lines. For example, a fetch cycle can show both an instruction and a READ EXTENSION, or FLUSH (or both).

| Label                    | Description                                                         |
|--------------------------|---------------------------------------------------------------------|
| ( RESET )                | A reset cycle                                                       |
| ( MEM READ )             | A nonlocked memory read cycle that is not an opcode fetch           |
| ( LOCKED MEM READ )      | A locked memory read cycle that is not an opcode fetch              |
| ( MEM WRITE )            | Any nonlocked memory write                                          |
| ( LOCKED MEM WRITE )     | Any locked memory write                                             |
| ( IO READ )              | Read from an I/O port                                               |
| ( IO WRITE )             | Write to an I/O port                                                |
| ( INT ACK )              | Interrupt acknowledge cycle                                         |
| ( SHUTDOWN )             | Shutdown/special bus cycle; BE7:BE0 = 11111110                      |
| ( CACHE FLUSH )          | Cache flush/special bus cycle; BE7:BE0 = 11111101                   |
| ( HALT )                 | Halt/special bus cycle; BE7:BE0 = 11111011                          |
| ( WRITE-BACK )           | Write back/special bus cycle; BE7:BE0 = 11110111                    |
| ( FLUSH ACK )            | Flush Ack/special bus cycle; BE7:BE0 = 11101111                     |
| ( BRANCH TRACE: TARGET ) | Branch Trace Message/special bus cycle; BE7:BE0 = 11011111          |
| ( BRANCH TRACE: SOURCE ) | Branch Trace Message/special bus cycle; BE7:BE0 = 11011111          |
| ( STOP GRANT ACK )       | Stop Grant cycle; cycle type is HALT/SPECIAL;<br>BE7:BE0 = 11111011 |

#### Table 2–3: Cycle type definitions

| Label                    | Description                                                                                                                                                |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( RESERVED )             | Reserved                                                                                                                                                   |
| ( ALTERNATE BUS MASTER ) | Bus is released to an Alternate Bus Master                                                                                                                 |
| ( BACK OFF )             | Back Off bus cycle                                                                                                                                         |
| ( UNKNOWN )              | An invalid/unknown bus cycle                                                                                                                               |
| ( BURST LINE FILL )*     | Fetch cycle computed to be a burst fill. The data is fetched but will not be executed, it is part of a 32 byte fetch. It will possibly be stored in cache. |
| ( BACKOFF/BURST FLUSH )* | Burst/Fetch cycle computed to be flushed due to a back off                                                                                                 |
| ( EXTENSION )*           | Fetch cycle computed to be an opcode extension                                                                                                             |
| ( FLUSH )*               | Fetch cycle computed to be flushed                                                                                                                         |
| ( DUAL FETCH )           | Nondisassembled fetch cycle from the Dual processor                                                                                                        |
| ( PRIMARY FETCH )        | Nondisassembled fetch cycle from the Primary processor                                                                                                     |

Table 2–3: Cycle type definitions (Cont.)

\* Computed cycle types.

|   | 1      | 2         | 3        | 6                 |      | 7         |
|---|--------|-----------|----------|-------------------|------|-----------|
|   | ¥      | ¥         | ¥        | ¥                 |      | ¥         |
|   | Sample | Address   | Data     | Mnemonic          |      | Timestamp |
|   |        | 000388AE  | FF33F633 | XOR EDI,EDI       | (32) |           |
|   | 15     | 000408A0  | C033CB00 | - ( DUAL FETCH )  |      | 100 ns    |
|   |        | 000408A4  | C933DB33 | - ( DUAL FETCH )  |      |           |
| ] | 16     | 000388B0> | ABFFE1C3 | RETS              | (32) | 100 ns    |
| ] |        | 00030004> | B6EFFFEF | ( FLUSH )         |      |           |
|   | 17     | 000408A8  | ED33D233 | - ( DUAL FETCH )  |      | 100 ns    |
|   |        | 000408AC  | FF33F633 | - ( DUAL FETCH )  |      |           |
|   | 18     | 000388B8  | FFB7D7FA | ( FLUSH )         |      | 100 ns    |
|   |        | 000388BC  | FFFFFDFF | ( FLUSH )         |      |           |
|   | 19     | 000408B0  | BDDF26C3 | - ( DUAL FETCH )  |      | 100 ns    |
|   |        | 000408B4  | FF27FFBF | - ( DUAL FETCH )  |      |           |
|   | 20     | 000207F4  | 00000005 | ( MEM READ )      |      | 100 ns    |
|   | 21     | 000408B8  | 5DBE5FED | - ( DUAL FETCH )  |      | 100 ns    |
|   |        | 000408BC  | 7FFEFBFB | - ( DUAL FETCH )  |      |           |
|   | 22     | 000388C0  | 44875050 | ( FLUSH )         |      | 100 ns    |
|   |        | 000388C4  | 04870824 | ( FLUSH )         |      |           |
|   | 23     | 000307F4  | 00000005 | - ( MEM READ )    |      | 100 ns    |
|   | 24     | 00038800  | 00009DE8 | ( FLUSH )         |      | 100 ns    |
|   |        | 00038805  | 000EBE00 | MOV ESI,#0000000E | (32) |           |
|   | 25     | 000408C0  | 44875050 | - ( DUAL FETCH )  |      | 100 ns    |
|   |        | 000408C4  | 04870824 | - ( DUAL FETCH )  |      |           |

Figure 2–3 shows an example of the Hardware display.

Figure 2–3: Hardware display format

- **1** Sample Column. Lists the memory locations for the acquired data.
- **2** Address Group. Lists data from channels connected to the Socket 7 address bus.
- **3** Data Column. Lists data from channels connected to D63-D32 and/or D31-D0 of the Socket 7 microprocessor data bus. Refer to the general description of viewing disassembled data for information on how the disassembler determines when to display information for the Data group.
- 4 This part of the sample is displaying data from channels connected to D31-D0 of the Socket 7 microprocessor data bus.
- This part of the sample is displaying data from channels connected to D63-D32 of the Socket 7 microprocessor data bus.
- **6** Mnemonic Column. Lists the disassembled instructions and cycle types.
- **Timestamp.** Lists the timestamp values when a timestamp selection is made. Information on basic operations describes how you can select a timestamp.

**Software Display Format** The Software display format shows only the first fetch of executed instructions. Flushed cycles and extensions are not shown, even though they are part of the executed instruction. Read extensions will be used to disassemble the instruction, but will not be displayed as a separate cycle in the Software display format. Data reads and writes are not displayed (see Figure 2–8 on page 2–22).

Out-of-order fetches are shown in the order the fetches are executed. An asterisk indicates an out-of-order fetch. The sample number of the out-of-order fetch will not be displayed if the previously executed instruction has a higher sample number. The sample number of the out-of-order fetch will be displayed if the previously executed instruction has a smaller sample number.

Since you cannot place the cursor on an instruction without a sample number, you will not be able to scroll to some out-of-order fetch instructions. To scroll to these instructions, you will have to switch to the Hardware display format. You also cannot mark an out-of-order fetch in software mode; you must switch to hardware mode.

## Control Flow Display<br/>FormatThe Control Flow display format shows only the first fetch of instructions that<br/>change the flow of control.

Instructions that generate a change in the flow of control in the Socket 7 microprocessor are as follows:

| CALL | IRET | RET |
|------|------|-----|
| INT  | JMP  | RSM |

Instructions that might generate a change in the flow of control in the Socket 7 microprocessor are as follows:

| BOUND      | JL/JNGE     | JNP/JPO       |
|------------|-------------|---------------|
| DIV        | JLE/JNG     | JNS           |
| IDIV       | JNB/JAE/JNC | JO            |
| INTO       | JNBE/JA     | JP/JPE        |
| JB/JNAE/JC | JNE/JNZ     | JS            |
| JBE/JNA    | JNL/JGE     | LOOP          |
| JCXZ/JECXZ | JNLE/JG     | LOOPNZ/LOOPNE |
| JE/JZ      | JNO         | LOOPZ/LOOPE   |

If a conditional jump branches to an address that is reached sequentially (no address break in the fetch sample), the disassembler cannot determine if the branch was taken. If there are two conditional jump instructions close together that branch to the same fetch line, then the disassembler may not be able to determine which conditional jump was actually taken. You can use the mark cycle function to correct the disassembly. Refer to *Marking Cycles* later in this section.

**MMX.** Instructions that generate a trap in the flow of control in the Socket 7 microprocessor are as follows:

| INT  | IRET | RSM |
|------|------|-----|
| CALL | RET  |     |

Instructions that might generate a conditional trap in the flow of control in the Socket 7 microprocessor are as follows:

| EMMS      | MOVD      | MOVQ      | PACKSSD   |
|-----------|-----------|-----------|-----------|
| PACKSSWB  | PACKUSWB  | PADDB     | PADDD     |
| PADDSB    | PADDSW    | PADDUSB   | PADDUSW   |
| PADDW     | PAND      | PANDN     | PCMPEQB   |
| PCMPEQD   | PCMPEQW   | PCMPGTB   | PCMPGTD   |
| PCMPGTW   | PMADDWD   | PMULHW    | PMULLW    |
| POR       | PSLLD     | PSLLQ     | PSLLW     |
| PSRAD     | PSRAW     | PSRLD     | PSRLQ     |
| PSRLW     | PSUBB     | PSUBD     | PSUBSB    |
| PSUBSW    | PSUBUSB   | PSUBUSW   | PSUBW     |
| PUNPCKHBW | PUNPCKHDQ | PUNPCKHWD | PUNPCKLBW |
| PUNPCKLDQ | PUNPCKLWD | PXOR      |           |

Subroutine Display<br/>FormatThe Subroutine display format shows only the first fetch of subroutine call and<br/>return instructions. It will display conditional subroutine calls if they are<br/>considered to be taken.

Instructions that generate a subroutine call or a return in the Socket 7 microprocessor are as follows:

| CALL | INT | IRET |
|------|-----|------|
| RET  | RSM |      |

Instructions that might generate a subroutine call or a return in the Socket 7 microprocessor are as follows:

**MMX.** Instructions that generate a trap in the flow of control in the Socket 7 microprocessor are as follows:

| INT  | IRET | RSM |
|------|------|-----|
| CALL | RET  |     |

Instructions that might generate a conditional trap in the flow of control in the Socket 7 microprocessor are as follows:

| EMMS     | MOVD     | MOVQ    | PACKSSDW |
|----------|----------|---------|----------|
| PACKSSWB | PACKUSWB | PADDB   | PADDD    |
| PADDSB   | PADDSW   | PADDUSB | PADDUSW  |

| PADDW     | PAND      | PANDN     | PCMPEQB   |
|-----------|-----------|-----------|-----------|
|           |           |           |           |
| PCMPEQD   | PCMPEQW   | PCMPGTB   | PCMPGTD   |
| PCMPGTW   | PMADDWD   | PMULHW    | PMULLW    |
| POR       | PSLLD     | PSLLQ     | PSLLW     |
| PSRAD     | PSRAW     | PSRLD     | PSRLQ     |
| PSRLW     | PSUBB     | PSUBD     | PSUBSB    |
| PSUBSW    | PSUBUSB   | PSUBUSW   | PSUBW     |
| PUNPCKHBW | PUNPCKHDQ | PUNPCKHWD | PUNPCKLBW |
| PUNPCKLDQ | PUNPCKLWD | PXOR      |           |

## **Changing How Data is Displayed**

There are common fields and features that allow you to further modify displayed data to suit your needs. You can make common and optional display selections in the Disassembly property page (the Disassembly Format Definition overlay).

You can make selections unique to the Socket 7 support to do the following tasks:

- Change how data is displayed across all display formats
- Change the interpretation of disassembled cycles
- Display exception vectors

**NOTE**. All information defined in these fields pertain to the microprocessor that is being traced.

# Optional Display<br/>SelectionsYou can make optional selections for disassembled data. In addition to the<br/>common selections (described in the information on basic operations), you can<br/>change the displayed data in the following ways:

- Specify the code segment size
- Choose an interrupt table
- Specify the starting address of the interrupt table
- Specify the size of the interrupt table
- Select to trace the Primary or Dual microprocessor
- Choose whether to display or suppress the hardware cycles from the microprocessor not being traced

The Socket 7 support has six additional fields: Code Segment Size, Interrupt Table, Interrupt Table Address, Interrupt Table Size, Trace Processor, and Other Processor. These fields appear in the area indicated in the information on basic operations.

**Code Segment Size.** You can select the default code size: 32-bit or 16-bit. The default code size is 16 bit.

**Interrupt Table.** You can specify if the interrupt table is Real, Virtual, or Protected. (Selecting Virtual is equivalent to selecting Protected.) The default is Real.

**Interrupt Table Address.** You can specify the starting address of the interrupt table in hexadecimal. The default starting address is 0x00000000.

**Interrupt Table Size.** You can specify the size of the interrupt table in hexadecimal. The default size is 0x400.

**Trace Processor**. You can select to disassemble data from the Primary or Dual microprocessor. The default is Primary.

**Processor**. You can specify either Intel or AMD depending on the socket7 processor that is under test. The TMS 109A Socket 7 support has been tested with both these microprocessor venders.

**Other Processor.** The "other" microprocessor is the one not being traced (not selected in the Trace Processor field). You can select to display or to suppress its bus cycles.

#### **Dual Microprocessors Execution Tracing** When acquiring data from a system under test with two microprocessors, the disassembler can trace the execution flow of one microprocessor and display the hardware cycle types of the microprocessor not being traced. This means that the software disassembles only the instructions executed from the microprocessor being traced.

You can trace instructions from either the Primary microprocessor or the Dual microprocessor. You can also choose to display or not display (suppress) data from the microprocessor not selected in the Trace Processor field of the Disassembly property page (Disassembly Format Definition overlay).

To set up the mode of tracing, you need to set the Trace Processor and Other Processor fields in the Disassembly property page. Table 2–4 shows the combinations of Trace Processor and Other Processor field selections and their effects.

| Trace processor | Other processor | Effect                                                                                                  |
|-----------------|-----------------|---------------------------------------------------------------------------------------------------------|
| Primary         | Suppress        | Disassemble the Primary microprocessor only                                                             |
| Primary         | Display Cycles  | Disassemble the Primary microprocessor and display the hardware cycles of the Dual microprocessor       |
| Dual            | Suppress        | Disassemble the Dual microprocessor only                                                                |
| Dual            | Display Cycles  | Disassemble the Dual microprocessor and<br>display the hardware cycles of the Primary<br>microprocessor |

Table 2-4: Trace Processor and Other Processor field selections

Figure 2–4 shows disassembled data from the Primary microprocessor and hardware cycles from the other microprocessor. A hyphen to the left of the mnemonic indicates data from the other microprocessor.

| Samp | le | Address  | Data            | Mnemonic          |      | Control  |
|------|----|----------|-----------------|-------------------|------|----------|
|      | 16 | 000388B0 | ABFFE1C3        | RETS              | (32) | P_FETCH  |
|      |    | 000388B4 | <b>B6EFFFEF</b> | ( FLUSH )         |      | P_FETCH  |
|      | 17 | 000408A8 | ED33D233        | - ( DUAL FETCH )  |      | D FETCH  |
|      |    | 000408AC | FF33F633        | - ( DUAL FETCH )  |      | D_FETCH  |
|      | 18 | 000388B8 | FFB7D7FA        | ( FLUSH )         |      | P_FETCH  |
|      |    | 000388BC | FFFFFDFF        | ( FLUSH )         |      | P_FETCH  |
|      | 19 | 000408B0 | BDDF26C3        | - ( DUAL FETCH )  |      | D_FETCH  |
|      |    | 000408B4 | FF27FFBF        | - ( DUAL FETCH )  |      | D_FETCH  |
|      | 20 | 000207F4 | 00000005        | ( MEM READ )      |      | P_MEM_RD |
|      | 21 | 000408B8 | 5DBE5FED        | - ( DUAL FETCH )  |      | D_FETCH  |
|      |    | 000408BC | 7FFEFBFB        | - ( DUAL FETCH )  |      | D FETCH  |
|      | 22 | 000388C0 | 44875050        | ( FLUSH )         |      | P FETCH  |
|      |    | 000388C4 | 04870824        | ( FLUSH )         |      | P FETCH  |
|      | 23 | 000307F4 | 00000005        | - ( MEM READ )    |      | D_MEM_RD |
|      | 24 | 00038800 | 00009DE8        | ( FLUSH )         |      | P_FETCH  |
|      |    | 00038805 | 000EBE00        | MOV ESI,#0000000E | (32) | P_FETCH  |
|      | 25 | 000408C0 | 44875050        | - ( DUAL FETCH )  |      | D FETCH  |
|      |    | 000408C4 | 04870824        | - ( DUAL FETCH )  |      | D_FETCH  |
|      | 26 | 0003880A | 0AB90000        | MOV ECX,#0000000A | (32) | P_FETCH  |
|      |    | 0003880F | F3000000        | REPZ              | (32) | P_FETCH  |

Figure 2-4: Data displayed from the Primary and Dual microprocessors

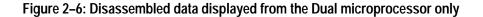

| S | ample | Address  | Data            | Mnemonic          |      | Control  |
|---|-------|----------|-----------------|-------------------|------|----------|
|   | 16    | 000388B0 | ABFFE1C3        | RETS              | (32) | P_FETCH  |
|   |       | 000388B4 | <b>B6EFFFEF</b> | ( FLUSH )         |      | P_FETCH  |
|   | 18    | 000388B8 | FFB7D7FA        | ( FLUSH )         |      | P FETCH  |
|   |       | 000388BC | FFFFFDFF        | ( FLUSH )         |      | P_FETCH  |
|   | 20    | 000207F4 | 00000005        | ( MEM READ )      |      | P_MEM_RD |
|   | 22    | 000388C0 | 44875050        | ( FLUSH )         |      | P FETCH  |
|   |       | 000388C4 | 04870824        | ( FLUSH )         |      | P_FETCH  |
|   | 24    | 00038800 | 00009DE8        | ( FLUSH )         |      | P_FETCH  |
|   |       | 00038805 | 000EBE00        | MOV ESI,#0000000E | (32) | P_FETCH  |
|   | 26    | 0003880A | 0AB90000        | MOV ECX,#0000000A | (32) | P FETCH  |
|   |       | 0003880F | F3000000        | REPZ              | (32) | P FETCH  |
|   | 28    | 00038810 | 003668AD        | LODSD             | (32) | P FETCH  |
|   |       | 00038811 | 003668AD        | PUSH #00000036    | (32) | P FETCH  |
|   |       | 00038816 | 026A0000        | PUSH #02          | (32) | P_FETCH  |
|   | 30    | 00038818 | 4668026A        | PUSH #02          | (32) | P_FETCH  |
|   |       | 0003881A | 4668026A        | PUSH #00000046    | (32) | P_FETCH  |
|   |       | 0003881F | 6A000000        | PUSH #02          | (32) | P_FETCH  |

Figure 2–5 shows disassembled data from the Primary microprocessor only. Data from the Dual microprocessor is suppressed and not displayed.

### Figure 2–5: Disassembled data displayed from the Primary microprocessor only

Figure 2–6 shows disassembled data from the Dual microprocessor only. Data from the Primary microprocessor is suppressed and not displayed.

|   | Sample | Address  | Data     | Mnemonic          | Control                   |
|---|--------|----------|----------|-------------------|---------------------------|
| - | 17     | 000408A8 | ED33D233 | XOR EDX,EDX       | (32) D_FETCH              |
|   |        | 000408AA | ED33D233 | XOR EBP,EBP       | (32) D FETCH              |
|   |        | 000408AC | FF33F633 | XOR ESI,ESI       | (32) D FETCH              |
|   |        | 000408AE | FF33F633 | XOR EDI,EDI       | (32) D <sup>–</sup> FETCH |
|   | 19     | 000408B0 | BDDF26C3 | RETS              | (32) D_FETCH              |
|   |        | 000408B4 | FF27FFBF | ( FLUSH )         | D_FETCH                   |
|   | 21     | 000408B8 | 5DBE5FED | ( FLUSH )         | D FETCH                   |
|   |        | 000408BC | 7FFEFBFB | ( FLUSH )         | D FETCH                   |
|   | 23     | 000307F4 | 00000005 | ( MEM READ )      | D MEM RD                  |
|   | 25     | 000408C0 | 44875050 | ( FLUSH )         | D_FETCH                   |
|   |        | 000408C4 | 04870824 | ( FLUSH )         | D_FETCH                   |
|   | 27     | 00040800 | 00009DE8 | ( FLUSH )         | D_FETCH                   |
|   |        | 00040805 | 000EBE00 | MOV ESI,#0000000E | (32) D <sup>–</sup> FETCH |
|   | 29     | 0004080A | 0AB90000 | MOV ECX,#0000000A | (32) D_FETCH              |
|   |        | 0004080F | F3000000 | REPZ              | (32) D_FETCH              |



**Branch Trace Messages** The disassembler interprets the information on the Address and Data Bus of Branch Trace Messages (BTMs) by reconstructing the address of the source or target of the branch instruction. Depending on which type of BTM is in use, either fast or normal, one or two BTMs will appear on the bus. The disassembler tracks BTMs as they appear on the bus. Figure 2–7 shows how the disassembler displays these cycles.

| <br>Sample | Address  | Data     | Mnemonic                 | Control   |
|------------|----------|----------|--------------------------|-----------|
| 4          | 000207F4 | 00000005 | ( MEM WRITE)             | P MEM WR  |
| 6          | 00038810 | 003868AD | ( FLUSH )                | P_FETCH   |
|            | 00038814 | 026A0000 | ( FLUSH )                | P_FETCH   |
| 8          | 000388A2 | 20       | ( BRANCH TRACE: TARGET ) | P_SPECIAL |
| 10         | 00038800 | 08       | ( BRANCH TRACE: SOURCE ) | P_SPECIAL |
| 14         | 00038818 | 33C03300 | ( FLUSH )                | P_FETCH   |
|            | 00038810 | 68C933DB | ( FLUSH )                | P_FETCH   |

### Figure 2–7: Display of target and source Branch Trace Messages

**Out-Of-Order Fetches** The Socket 7 microprocessor can prefetch cycles out of ascending order. For example, a branch to address 1008 could cause the following sample of addresses across the bus: 1008, 1000, 1018, and 1010. The data at address 1008 is executed, but the data at address 1000 is not. The data at addresses 1018 and 1010 are executed, but the data at address 1010 is executed before the data at 1018.

An example of the Intel fetched order versus the executed order is shown below.

| Fetched Order | Executed Order |
|---------------|----------------|
| 1008          | 1008           |
| 1000          | 1010           |
| 1018          | 1018           |
| 1010          |                |

The AMD socket has an out-of-order bus. An example of the AMD fetched order versus the executed order is shown below.

| Executed Order |
|----------------|
| 1000           |
| 1008           |
| 1010           |
| 1018           |
|                |

In the Hardware display format, the out-of-order fetches are displayed in the order they are fetched. They will be properly disassembled and identified by an asterisk (\*) to the left of the instruction (see Figure 2–9 on page 2–23).

In the Hardware display format, you can determine the executed order of the out-of-order fetches by looking at the address of the out-of-order cycles and the subsequent cycles. Fetch cycles always have the sample numbers displayed.

In the Software display format, out-of-order fetches are displayed in the order they were executed (see Figure 2–8). If the previously executed instruction had a larger sample number than the out-of-order fetch, the sample number will not be displayed. If the previous sample number is smaller than the out-of-order fetch, the sample number will be displayed. To mark an instruction without a sample number, switch to the Hardware display format (see Figure 2–9 on page 2–23).

| Sample | SOCKET7<br>Address | SOCKET7<br>Data      | Address   | SOCKET7<br>Mnemonic                                        |                                                                    | SOCKET7<br>Control | Cache      | Timestamp     |
|--------|--------------------|----------------------|-----------|------------------------------------------------------------|--------------------------------------------------------------------|--------------------|------------|---------------|
|        | 0002000C           | F633ED33             |           | *XOR EBP,EBP (                                             | 32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32)               | P_FETCH            |            |               |
|        | 0002000E           | F633ED33             |           | *XOR ESI,ESI (                                             | (32)                                                               | P_FETCH            |            |               |
|        | 00020010           | 9BC3FF33             |           | *XOR EDI,EDI (                                             | (32)                                                               | P_FETCH            |            |               |
|        | 00020012           | 9BC3FF33             |           | *RETS (                                                    | (32)                                                               | P_FETCH            |            |               |
| 252    | 0001F7F0           | OFD8F20F             | 0001F7F0  | *PSLLD MM3,MM0 (MMX) (                                     | (32)                                                               | P_FETCH            | 1          | 23.634,500 us |
|        | 0001F7F3           | OFD8F20F             |           | *PSLLD MM3,MMO (MMX) (<br>*PSLLD MM3,#CC (MMX) (           | 321                                                                | P_FETCH            | -          |               |
|        | 0001F7F7           | OFCCF372             |           | *PSLLQ_MM2,MM1_QMMXQ(                                      | (32)                                                               | P_FETCH            |            |               |
|        | 0001F7FA           | 48E9D1F3             |           | *JMPS 0001F847 (                                           | 321                                                                | P_FETCH            |            |               |
| 258    | 0001F847           | OFFFFFFE             | 0001F840  | PSUBSW MM3,[EBX] (MMX) (                                   | 321                                                                | P_FETCH            | 1          | 24.373,000 us |
|        | 0001F84A           | 589C1BE9             |           | *PUSHFD (                                                  | (32)                                                               | P_FETCH            | -          |               |
|        | 0001F84B           | 589C1BE9             |           | *POP EAX                                                   | 55i                                                                | P_FETCH            |            |               |
|        | 0001F84C           | FFFFBE25             |           | *AND EAX,#FFFFFBE                                          | 1251                                                               | P_FETCH            |            |               |
|        | 0001F851           | OF9D50FF             |           | *PUSH EAX                                                  | 251                                                                | P_FETCH            |            |               |
|        | 0001F852           | OF9D50FF             |           | *POPFD (                                                   | 1251                                                               | P_FETCH            |            |               |
|        | 0001F853           | OF9D50FF             |           | *JNBE 0001F86F 0                                           | (32)                                                               | P_FETCH            |            |               |
| 270    | 0001F86F           | 0F909000             | 0001F868  | *PMILLERM MM7_MM1_(7DNowl) (                               | 22)                                                                | P_FETCH            | 1          | 26.169,000 us |
| 270    | 0001F873           | 0FB7F90F             | 00011000  | *PMULHRW MM7,MM1 (3DNow!) (<br>*PAVGUSB MM1,[EAX] (3DNow!) | (22)                                                               | P_FETCH            | - <b>-</b> | 20.105,000 us |
|        | 0001F877           | 9CBF080F             |           |                                                            |                                                                    | P_FETCH            |            |               |
|        | 0001F878           | 00010058             |           | *POP EAX                                                   | 22                                                                 |                    |            |               |
|        | 0001F879           | 00010D58             |           | *OR EAX,#00000001                                          | (22)                                                               | P_FETCH<br>P_FETCH |            |               |
|        | 0001F879           |                      |           |                                                            | 22                                                                 |                    |            |               |
|        | 0001F87E           | 9D500000<br>9D500000 |           | *PUSH EÁX (<br>*POPFD (                                    | 22                                                                 | P_FETCH            |            |               |
| 220    | 00016876           | 90500000             | 0001 5000 | *PUPPD 0                                                   | 32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32) | P_FETCH            |            | 22 555 500    |
| 279    | 0001F880           | 9090D872             | 0001F880  | JB 0001F85A (                                              | (32)                                                               | P_FETCH            | 1          | 27.555,500 us |
| 286    | 0001F85A           | 0F0F9000             | 0001F858  | *PFCMPEQ_MM2,[EDX] (3DNow!)                                | (32)                                                               | P_FETCH            | 11         | 28.513,500 us |
|        | 0001F85E           | 589CB012             |           | *PUSHFD (                                                  | (32)                                                               | P_FETCH            |            |               |
|        | 0001F85F           | 589CB012             |           | *POP EAX                                                   | (32)<br>(32)<br>(32)<br>(32)<br>(32)<br>(32)                       | P_FETCH            |            |               |
| 296    | 0001F860           | FFFFFE25             | 0001F860  | AND EAX,#FFFFFFE (                                         | (32)                                                               | P_FETCH            | 1          | 29.870,000 us |
|        | 0001F865           | OF9D50FF             |           | PUSH_EAX (                                                 | 32)                                                                | P_FETCH            |            |               |
|        | 0001F866           | OF9D50FF             |           | POPFD (                                                    | (32)                                                               | P_FETCH            |            |               |
|        | 0001F867           | OF9D50FF             |           | JNB 0001F8C1 (                                             | (32)                                                               | P_FETCH            |            |               |
| 306    | 0001F8C1           | 380F0FA6             | 0001F8C0  | PMULHRW MM7,[EAX] (3DNow!)                                 | (32)                                                               | P_FETCH            | 1          | 31.197,000 us |
|        | 0001F8C5           | 590F0FB7             |           | PAVGUSB MM3,08[ECX] (3DNow!)                               | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8CA           | OFOFBF08             |           | *PF2ID MM5,08[EBP] (3DNow!)                                | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8CF           | 9C1D086D             |           | *PUSHFD (                                                  | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8D0           | 00410D58             |           | *POP_EAX                                                   | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8D1           | 00410D58             |           | *OR EAX,#00000041 (                                        | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8D6           | 9D500000             |           | *PUSH_EÁX                                                  | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8D7           | 90500000             |           | *POPFD (                                                   | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8D8           | 0004860F             |           | *JBE 0001F8E2 (                                            | (32)                                                               | P_FETCH            |            |               |
| 322    | 0001F8E2           | 589C9090             | 0001F8E0  | PUSHFD (                                                   | (32)                                                               | P_FETCH            | 1          | 33.901,000 us |
|        | 0001F8E3           | 589C9090             |           | POP EAX (                                                  | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8E4           | 0000010D             |           | OR EAX,#00000001 (                                         | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8E9           | 0F9D5000             |           | *PUSH EÁX (                                                | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8EA           | 0F9D5000             |           | *POPFD (                                                   | (32)                                                               | P_FETCH            |            |               |
|        | 0001F8EB           | 0F9D5000             |           | *JB 0001F8FE (                                             | (32)                                                               | P_FETCH            |            |               |
| 331    | 0001F8FE           | 0F9C90B6             | 0001F8F8  | *PUSHFD (                                                  | (32)                                                               | P_FETCH            | 1          | 35.148,000 us |
|        | 0001F8FF           | 0F9C90B6             |           | *PAVGUSB_MM7,[EDX] (3DNow!)                                | (32)<br>(32)<br>(32)<br>(32)<br>(32)<br>(32)<br>(32)<br>(32)       | P_FETCH            |            |               |
| 339    | 0001F903           | OFBF3AOF             | 0001F900  | PF2ID MMO,[ÉAX] (3DNow!) (                                 | (32)                                                               | P_FETCH            | 1          | 36.145,500 us |
|        | 0001F907           | 0F1D000F             |           | PFACC MM6,[EDI] (3DNow!) (                                 | (32)                                                               | P_FETCH            |            |               |
|        | 0001F90B           | 58AE370F             |           | *POP EAX (                                                 | (32)                                                               | P_FETCH            |            |               |
|        | 0001F90C           | 0000010D             |           | *OR EAX,#00000001 (                                        | 32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32)<br>32)        | P_FETCH            |            |               |
|        | 0001F911           | 0F9D5000             |           | *PUSH EÁX (                                                | (32)                                                               | P_FETCH            |            |               |
|        | 0001F912           | 0F9D5000             |           | *POPFD (                                                   | (32)                                                               | P_FETCH            |            |               |
|        | 0001E913           | 05905000             |           | *1NB_0001EB5D(                                             | (32)                                                               | PEFTCH             |            |               |

Figure 2–8: Software display for the AMD Bus cycles

| Comula | SOCKET7              | SOCKET7              | 444        | SOCKET7                                                                                                                         | SOCKET7<br>Control  | Carles   | Timestamp     |
|--------|----------------------|----------------------|------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|---------------|
| Sample | Address              | Data                 | Address    | Mnemonic                                                                                                                        | Control             | Cache    |               |
| 280    | 0001F71C             | 00000207             | 0001F71C   | (MEM WRITE)                                                                                                                     | P_MEM_WR            | 1        | 27.595,500 us |
| 281    | 0001F71C             | 00000207             | 0001F71C   | ( MEM READ )                                                                                                                    | P_MEM_RD            | 1        | 27.845,000 us |
| 282    | 0001F8B8             | 9408520F             | 0001F8B8   | *(FLUSH)                                                                                                                        | P_FETCH             | 1        | 28.074,500 us |
|        | 0001F8BC             | 08650F0F             |            | *( FLUSH )                                                                                                                      | P_FETCH             |          |               |
| 283    | 0001F8B0             | OFOFB73F             | 0001F8B0   | *( FLUSH )                                                                                                                      | P_FETCH             | 1        | 28.184,000 us |
| 284    | 0001F8B4<br>0001F8A8 | 0FAE084D<br>0F000002 | 0001 59 49 | *(FLUSH)<br>*(FLUSH)                                                                                                            | P_FETCH<br>P_FETCH  | 1        | 28.294,000 us |
| 204    | 0001F8AC             | 0F0F3668             | 0001F8A8   | *(FLUSH)                                                                                                                        | P_FETCH             | 1        | 20.234,000 us |
| 285    | 0001F8A0             | 0F000002             | 0001F8A0   | (FLUSH)                                                                                                                         | P_FETCH             | 1        | 28.403,500 us |
|        | 0001F8A4             | 8E128CD9             | 0001.000   | (FLUSH)                                                                                                                         | P_FETCH             | -        | 201405,500 45 |
| 286    | 0001F85A             | 0F0F9000             | 0001F858   | *PFCMPEQ_MM2,[EDX] (3DNow!) (32)                                                                                                | P_FETCH             | 1        | 28.513,500 us |
|        | 0001F85E             | 589CB012             |            | *PUSHFD (32)                                                                                                                    | P_FETCH             | -        | ,             |
|        | 0001F85F             | 589CB012             |            | *PFCMPEQ_MM2,[EDX] (3DNow!) (32)<br>*PUSHFD (32)<br>*POP_EAX_ (32)                                                              | P_FETCH             |          |               |
| 287    | 0001F850             | OF9D50FF             | 0001F850   | *(FLUSH)                                                                                                                        | P_FETCH             | 1        | 28.623,000 us |
|        | 0001F854             | 00001687             |            | *(FLUSH)                                                                                                                        | P_FETCH             |          |               |
| 288    | 0001D000             | 00000000             | 0001D000   | ( MEM READ )                                                                                                                    | P_MEM_RD            | 1        | 28.802,500 us |
|        | 0001D004             | 00000000             | 0004 50 40 | ( MEM READ )                                                                                                                    | P_MEM_RD            |          | 20,000,500,   |
| 289    | 0001F848<br>0001F84C | 589C1BE9<br>FFFFBE25 | 0001F848   | *(FLUSH)<br>*(FLUSH)                                                                                                            | P_FETCH             | 1        | 28.982,500 us |
| 290    | 0001F84C             | 00000207             | 0001F71C   | (MEM WRITE)                                                                                                                     | P_FETCH<br>P_MEM_WR | 1        | 29.022,000 us |
| 290    | 0001F840             | F6E900F9             | 0001F840   | (FLUSH)                                                                                                                         | P_FETCH             | 1        | 29.122,000 us |
| 2.71   | 0001F844             | OFFFFFF              | 00011040   | (FLUSH)                                                                                                                         | P_FETCH             | <b>-</b> | 25.122,000 US |
| 292    | 0001F71C             | 00000207             | 0001F71C   | (MEM READ)                                                                                                                      | P_MEM_RD            | 1        | 29.361,500 us |
| 293    | 0001F878             | 00010D58             | 0001F878   | *(FLUSH)                                                                                                                        | P_FETCH             | ī        | 29.541,000 us |
|        | 0001F87C             | 9D500000             |            | *(FLUSH)                                                                                                                        | P_FETCH             |          |               |
| 294    | 0001F870             | OFB7F90F             | 0001F870   | *(FLUSH)                                                                                                                        | P_FETCH             | 1        | 29.650,500 us |
|        | 0001F874             | 9CBF080F             |            | *(FLUSH)                                                                                                                        | P_FETCH             |          |               |
| 295    | 0001F868             | 00005483             | 0001F868   | *( EXTENSION )                                                                                                                  | P_FETCH             | 1        | 29.760,500 us |
|        | 0001F86C             | 0F909000             | 0000 50 50 | *(EXTENSION)                                                                                                                    | P_FETCH             |          | 20,070,000,   |
| 296    | 0001F860             | FFFFFE25             | 0001F860   | AND EAX,#FFFFFFFE (32)<br>PUSH EAX (32)<br>POPFD (32)<br>JNB 0001F8C1 (32)<br>(32)                                              | P_FETCH             | 1        | 29.870,000 us |
|        | 0001F865<br>0001F866 | 0F9D50FF<br>0F9D50FF |            | PUSH EAX (32)<br>POPFD (32)                                                                                                     | P_FETCH<br>P_FETCH  |          |               |
|        | 0001F867             | OF9D50FF             |            | JNB 0001F8C1 (32)                                                                                                               | P_FETCH             |          |               |
| 297    | 0001F71C             | 00000206             | 0001F71C   | ( MEM WRITE )                                                                                                                   | P_MEM_WR            | 1        | 29.940,000 us |
| 298    | 0001F71C             | 00000206             | 0001F71C   | ( MEM READ )                                                                                                                    | P_MEM_RD            | ī        | 30.189,500 us |
| 299    | 0001F898             | OFCAE10F             | 0001F898   | *(FLUSH)                                                                                                                        | P_FETCH             | 1        | 30.429,000 us |
|        | 0001F89C             | 8E3D24D8             |            | *(FLUSH)                                                                                                                        | P_FETCH             |          |               |
| 300    | 0001F890             | 0000028E             | 0001F890   | *(FLUSH)                                                                                                                        | P_FETCH             | 1        | 30.538,500 us |
|        | 0001F894             | CCF4730F             | 0000 5000  | *( FLUSH )                                                                                                                      | P_FETCH             |          | 70 540 575    |
| 301    | 0001F888             | 3F0F0FB0             | 0001F888   | *( FLUSH )                                                                                                                      | P_FETCH             | 1        | 30.648,500 us |
| 302    | 0001F88C<br>0001F880 | 8BE50FA6<br>9090D872 | 0001F880   | *(FLUSH)<br>(FLUSH)                                                                                                             | P_FETCH             | 1        | 30 758 000    |
| 502    | 0001F884             | 1A0F0F90             | 00011000   | (FLUSH)                                                                                                                         | P_FETCH<br>P_FETCH  | 1        | 30.758,000 us |
| 303    | 0001F8D8             | 0004860F             | 0001F8D8   | *JBE 0001F8E2 (32)                                                                                                              | P_FETCH             | 1        | 30.868,000 us |
|        | 0001F8DC             | 90900000             | 0001.000   | *(EXTENSION)                                                                                                                    | P_FETCH             | -        | 50.000,000 45 |
| 304    | 0001F8D0             | 00410D58             | 0001F8D0   | *POP EAX (32)                                                                                                                   | P_FETCH             | 1        | 30.977,500 us |
|        | 0001F8D1             | 00410D58             |            | *OR EAX,#00000041 (32)                                                                                                          | P_FETCH             |          |               |
|        | 0001F8D6             | 9D500000             |            | *PUSH EAX (32)                                                                                                                  | P_FETCH             |          |               |
|        | 0001F8D7             | 9D500000             |            | *POPFD (32)                                                                                                                     | P_FETCH             |          |               |
| 305    | 0001F8CA             | OFOFBF08             | 0001F8C8   | *PF2ID_MM5,08[EBP] (3DNow!) (32)                                                                                                | P_FETCH             | 1        | 31.087,500 us |
| 300    | 0001F8CF             | 9C1D086D             | 00015970   | *PUSHFD (32)<br>DMULHDM MMZ FEAX3 (2DNow1) (22)                                                                                 | P_FETCH             | 1        | 71 197 000    |
| 306    | 0001F8C1<br>0001F8C5 | 380F0FA6<br>590F0FB7 | 0001F8C0   | PMULHRW MM7,[EAX] (3DNow!) (32)<br>PAVGUSB MM3,08[ECX] (3DNow!) (32)                                                            | P_FETCH<br>P_FETCH  | 1        | 31.197,000 us |
| 307    | 0001F8F8             | 3BOFOFB6             | 0001F8F8   | *PF2ID MMS,08[EBP] (3DNow!) (32)<br>*PUSHFD<br>PMULHRW MM7,[EAX] (3DNow!) (32)<br>PAVGUSB MM3,08[ECX] (3DNow!) (32)<br>*(FLUSH) | P_FETCH             | 1        | 31.516,500 us |
|        | 00011010             | 0010106              | 00011010   | C ( COSH )                                                                                                                      | i i Li ci cii       |          | JI.JIO,JOO US |

#### Figure 2–9: Hardware display for the AMD Bus cycles

Speculative Prefetch Cycles Speculative prefetch cycles can occur when the Socket 7 microprocessor fetches instructions that have been previously executed. To minimize prefetch delays, the Socket 7 microprocessor predicts the outcome of the branch instruction and starts prefetching at that address. When the branch instruction is executed, the target address is determined. If the Socket 7 microprocessor predicted the target address correctly, then the needed code has already been fetched. If it did not correctly predict the target address, then the speculative prefetch cycles that had been fetched will be flushed and fetching will begin at the target address.

Figure 2–10 shows an example of speculative prefetch cycles. The previous time (not shown) that the JNE instruction was executed, the branch was taken and the new target address was 0x3893D. The microprocessor assumed that the address would be 0x3893D and so started fetching at 0x38938 (which contains 0x3893D). Cycles at samples 746 and 748 are speculative prefetch cycles. When the instruction was executed, the microprocessor determined that the branch was

| Sample | Address  | Data     | Mnemonic          | Control                   |
|--------|----------|----------|-------------------|---------------------------|
|        | 00038986 | B575C90F | JNE 0003893D      | (32) P_FETCH              |
| 734    | 000207D8 | 80000008 | ( MEM READ )      | P_MEM_RD                  |
| 736    | 000207E8 | 00000046 | ( MEM READ )      | P MEM RD                  |
| 738    | 00038988 | 00000BA  | ( FLUSH )         | P_FETCH                   |
|        | 0003898C | 24558900 | ( FLUSH )         | P_FETCH                   |
| 740    | 00038990 | 20C2619D | ( FLUSH )         | P_FETCH                   |
|        | 00038994 | 6FBF6D00 | ( FLUSH )         | P FETCH                   |
| 742    | 00038998 | CDBFDE6F | ( FLUSH )         | P_FETCH                   |
|        | 0003899C | FFEFFFF7 | ( FLUSH )         | P_FETCH                   |
| 744    | 000389A0 | FFFFEDAE | ( FLUSH )         | P_FETCH                   |
|        | 000389A4 | F6FFF7EF | ( FLUSH )         | P FETCH                   |
| 746    | 00038938 | DB9BFF33 | ( FLUSH )         | P_FETCH                   |
|        | 0003893C | 0002A3E3 | ( FLUSH )         | P_FETCH                   |
| 748    | 00038940 | 6D8A0000 | ( FLUSH )         | P_FETCH                   |
|        | 00038944 | 204D8A10 | ( FLUSH )         | PFETCH                    |
| 750    | 00038988 | 00000BA  | MOV EDX,#00000000 | (32) P <sup>–</sup> FETCH |
|        | 0003898D | 24558900 | MOV 24[EBP],EDX   | (32) P FETCH              |

not taken, flushed the speculative prefetch cycles, and started fetching at 0x38988 (sample 750), which contained the next instruction after the JNE.

### Figure 2–10: Speculative Prefetch cycles

**NOTE**. The microprocessor also has a Branch Target Buffer and often performs speculative prefetching of branch target addresses (no matter if they are taken or are not taken). The disassembler usually interprets the correct flow of execution but cannot do so deterministically.

| Cache Invalidation Cycles       | Cache Invalidation cycles are needed to keep the microprocessor cache contents consistent with external memory. On a nonburst cycle that is also a Cache Invalidation cycle, the data and address will be valid as probed. On a burst cycle that is also a Cache Invalidation cycle, the data will be valid, but the addresses will not be valid as probed and the software will try to calculate the address from the surrounding cycles. Fetch cycles are disassembled. A letter <b>c</b> to the left of the mnemonic indicates a Cache Invalidation cycle, where the AHOLD signal was active. |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Burst Cycles                    | On all burst cycles, only the first cycle contains a valid address. The Socket 7 microprocessor does not increment the address for a burst. The disassembler calculates the remaining burst cycle addresses for display.                                                                                                                                                                                                                                                                                                                                                                         |
| System Management<br>Mode (SMM) | The Socket 7 microprocessor provides a special mode called System Manage-<br>ment Mode where the Socket 7 microprocessor CPU executes code from a                                                                                                                                                                                                                                                                                                                                                                                                                                                |

separate, alternate memory space called SMRAM. The disassembler uses information from the SMIACT# signal to determine when the Socket 7 microprocessor is operating in this mode.

**MMX Instruction Set** The Socket 7 microprocessor includes the MMX instruction set. Since these instructions are potential subroutine instructions, the disassembler checks to see if an interrupt level 6 (illegal opcode) or 7 (device not available) occurred. If an interrupt 6 or 7 occurs, the interrupt will flush the bus.

When the disassembler detects that an instruction is from the MMX set, it displays an (MMX) to the right of the mnemonic.

MMX instructions are disassembled whether or not the microprocessor is set up to execute them.

**3DNow!** The Socket 7 microprocessor includes the 3DNow! instruction set which supports AMD-K6-2. When the disassembly detects that an instruction is from the 3DNow! set, it displays (3DNow!) to the right of the mnemonics.

**Marking Cycles** The disassembler has a Mark Opcode function that allows you to change the interpretation of a cycle type. Using this function, you can select a cycle and change it to one of the following cycle types:

- Opcode & Flush Previous (marks the first word of an instruction and the lower bytes of this cycle as flushed)
- Opcode (marks the first word of an instruction)
- Flush to end (flushes the current byte to the high end of the sample)
- Flush (marks an opcode or extension that is fetched but not executed)
- Undo (clears all marks on this byte)
- Flush Cycle (the entire cycle was fetched, but not executed (opcode or extension))
- 16-bit or 32-bit default segment size

Mark selections are as follows:

| Lo: |    |    |    | 00 |
|-----|----|----|----|----|
| Lo: |    |    | 11 |    |
| Lo: |    | 22 |    |    |
| Lo: | 33 |    |    |    |
| Hi: |    |    |    | 44 |
| Hi: |    |    | 55 |    |
| Hi: |    | 66 |    |    |

|                                 | <ul> <li>Hi: 77 FLUSH CYCLE</li> <li>16-bit Default Segment Size</li> <li>32-bit Default Segment Size</li> <li>Undo marks on this cycle</li> <li>You can use the Mark Opcode function to specify the default segment size mode</li> <li>(16-bit or 32-bit) for the cycle. The segment size selection changes the cycle the cursor is on and the remaining cycles to the end of memory or to the next mark.</li> </ul> |                                        |                          |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------|
|                                 | The default segment size of the cycle is independent of any prefix override bytes<br>in the particular fetch. For example, if you mark cycle 455 with a default size of<br>32 bits, but there are address/operand override prefixes in the instruction, the<br>default size will be 32 bits but the size of the instruction will be 16 bits.                                                                          |                                        |                          |
|                                 | Only one selection can be made at a time. If the you want to mark both the opcode and default size of a particular cycle, it must be done in two different steps.                                                                                                                                                                                                                                                     |                                        |                          |
|                                 | When marking opcodes of out-of-order fetches, and displaying in Software mode, and an out-of-order fetch does not have a sequence number, you must switch to hardware mode to mark that sequence. See <i>Out-Of-Order Fetches</i> on page 2–21 and <i>Software Display Format</i> on page 2–15.                                                                                                                       |                                        |                          |
|                                 | Information on basic operations contains more details on marking cycles.                                                                                                                                                                                                                                                                                                                                              |                                        |                          |
| Displaying Exception<br>Vectors | The disassembler can display exception vectors. You can select to display the interrupt vectors for Real, Virtual, or Protected modes in the Interrupt Table field. (Selecting Virtual is equivalent to selecting Protected.)                                                                                                                                                                                         |                                        |                          |
|                                 | You can relocate the table by entering the starting address in the Interrupt Table<br>Address field. The Interrupt Table Address field provides the disassembler with<br>the offset address; enter an eight-digit hexadecimal value corresponding to the<br>offset of the base address of the exception table. The Interrupt Table Size field<br>lets you specify a three-digit hexadecimal size for the table.       |                                        |                          |
|                                 | You can make these selections in the Disassembly property page (the Disassembly Format Definition overlay).                                                                                                                                                                                                                                                                                                           |                                        |                          |
|                                 | Table 2–5 lists the Socket 7 exception vectors for the Real Addressing mode.                                                                                                                                                                                                                                                                                                                                          |                                        |                          |
|                                 | Table 2–5: Exception vectors for Real Addressing mode                                                                                                                                                                                                                                                                                                                                                                 |                                        |                          |
|                                 | Exception number                                                                                                                                                                                                                                                                                                                                                                                                      | Location in IV* table (in hexadecimal) | Displayed interrupt name |
|                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000                                   | DIVIDE ERROR             |
|                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                     | 0004                                   | DEBUG EXCEPTIONS         |

NMI INTERRUPT

2

8000

| Exception number | Location in IV* table<br>(in hexadecimal) | Displayed interrupt name |
|------------------|-------------------------------------------|--------------------------|
| 3                | 000C                                      | BREAKPOINT INTERRUPT     |
| 4                | 0010                                      | INTO DETECTED OVERFLOW   |
| 5                | 0014                                      | BOUND RANGE EXCEEDED     |
| 6                | 0018                                      | INVALID OPCODE           |
| 7                | 001C                                      | DEVICE NOT AVAILABLE     |
| 8                | 0020                                      | DOUBLE DEFAULT           |
| 9                | 0024                                      | RESERVED                 |
| 10               | 0028                                      | RESERVED                 |
| 11               | 002C                                      | RESERVED                 |
| 12               | 0030                                      | STACK EXCEPTION          |
| 13               | 0034                                      | SEGMENT OVERRUN          |
| 14-15            | 0038-003C                                 | RESERVED                 |
| 16               | 0040                                      | COPROCESSOR ERROR        |
| 17-31            | 0044-007C                                 | RESERVED                 |
| 32-255           | 0080-03FC                                 | USER DEFINED             |

Table 2–5: Exception vectors for Real Addressing mode (cont.)

\* IV means interrupt vector.

Table 2–6 lists the Socket 7 exception vectors for the Protected Addressing mode.

| Table 2–6: Exception vectors fe | or Protected Addressing mode |
|---------------------------------|------------------------------|
|                                 |                              |

| Exception number | Location in IDT*<br>(in hexadecimal) | Displayed exception name |
|------------------|--------------------------------------|--------------------------|
| 0                | 0000                                 | DIVIDE ERROR             |
| 1                | 0008                                 | DEBUG EXCEPTIONS         |
| 2                | 0010                                 | NMI INTERRUPT            |
| 3                | 0018                                 | BREAKPOINT INTERRUPT     |
| 4                | 0020                                 | INTO DETECTED OVERFLOW   |
| 5                | 0028                                 | BOUND RANGE EXCEEDED     |
| 6                | 0030                                 | INVALID OPCODE           |
| 7                | 0038                                 | DEVICE NOT AVAILABLE     |
| 8                | 0040                                 | DOUBLE FAULT             |
| 9                | 0048                                 | RESERVED                 |
| 10               | 0050                                 | INVALID TSS              |
| 11               | 0058                                 | SEGMENT NOT PRESENT      |

| Exception number | Location in IDT*<br>(in hexadecimal) | Displayed exception name |
|------------------|--------------------------------------|--------------------------|
| 12               | 0060                                 | STACK EXCEPTION          |
| 13               | 0068                                 | SEGMENT OVERRUN          |
| 14               | 0070                                 | PAGE FAULT               |
| 15               | 0078                                 | RESERVED                 |
| 16               | 0080                                 | COPROCESSOR MODE         |
| 17               | 0088                                 | ALIGNMENT CHECK          |
| 18               | 0090                                 | MACHINE CHECK            |
| 19-31            | 0090-00F8                            | RESERVED                 |
| 32-255           | 0100-07F8                            | USER DEFINED             |

Table 2-6: Exception vectors for Protected Addressing mode (cont.)

\* IDT means interrupt descriptor table.

# Viewing an Example of Disassembled Data

A demonstration system file (or demonstration reference memory) is provided so you can see an example of how your Socket 7 microprocessor bus cycles and instruction mnemonics look when they are disassembled. Viewing the system file is not a requirement for preparing the module for use and you can view it without connecting the logic analyzer to your system under test.

Information on basic operations describes how to view the file.

# **Specifications**

# **Specifications**

This chapter contains the following information:

- Probe adapter description
- Specification tables
- Dimensions of the probe adapter

#### **Probe Adapter Description**

The probe adapter is nonintrusive hardware that allows the logic analyzer to acquire data from a microprocessor in its own operating environment with little effect, if any, on that system. Information on basic operations contains a figure showing the logic analyzer connected to a typical probe adapter. Refer to that figure while reading the following description.

The probe adapter consists of a circuit board and two sockets for a Socket 7 microprocessor. The probe adapter connects to the microprocessor in the system under test. Signals from the microprocessor-based system flow from the probe adapter to the channel groups and through the probe signal leads to the module.

All circuitry on the probe adapter is powered from the supplied power adapter.

The probe adapter accommodates the Intel Pentium, low-power embedded Pentium with MMX technology, and Socket 7 microprocessors devices.

# **Specifications**

These specifications are for a probe adapter connected between a compatible Tektronix logic analyzer and a system under test. Table 3–1 shows the electrical requirements the system under test must produce for the support to acquire correct data.

In Table 3–1 one podlet load is 20 k $\Omega$  in parallel with 2 pF.

| Characteristics                                  | Requirements                                               |                             |  |  |  |  |
|--------------------------------------------------|------------------------------------------------------------|-----------------------------|--|--|--|--|
| System under test DC power requirements          |                                                            |                             |  |  |  |  |
| Voltage                                          | 4.75 – 5.25 VDC                                            | 4.75 – 5.25 VDC             |  |  |  |  |
| Current                                          | I maximum (calculated) 1.8 A<br>I typical (measured) 1.2 A |                             |  |  |  |  |
| Probe adapter power supply requirements          |                                                            |                             |  |  |  |  |
| Voltage                                          | 90 – 265 VAC                                               |                             |  |  |  |  |
| Current                                          | 1.1 A maximum at 100 VAC                                   |                             |  |  |  |  |
| Frequency                                        | 47 – 63 Hz                                                 |                             |  |  |  |  |
| Power                                            | 25 W maximum                                               |                             |  |  |  |  |
| System under test clock                          |                                                            |                             |  |  |  |  |
| Clock rate<br>Tested cock rate                   | Maximum 100 MHz<br>Maximum 100 MHz                         |                             |  |  |  |  |
| Minimum setup time required                      | 3.0 ns                                                     |                             |  |  |  |  |
| Minimum hold time required                       | 0 ns                                                       |                             |  |  |  |  |
|                                                  | AC load                                                    | DC load                     |  |  |  |  |
| Measured typical SUT signal loading              |                                                            |                             |  |  |  |  |
| CLK                                              | 25 pF                                                      | 1 CDC2510B   (500ohms+30pF) |  |  |  |  |
| ADS#, ADSC#, W/R#, BRDY#, HLDA,<br>BE7–0#, BOFF# | 5 pF                                                       | 1 22LV10                    |  |  |  |  |
| RESET                                            | 5 pF                                                       | 1 22LV10                    |  |  |  |  |
| All other signals                                | 2 pF                                                       | 1 22LV10                    |  |  |  |  |

Table 3–2 shows the environmental specifications.

Table 3–2: Environmental specifications\*

| Characteristic         | Description                           |  |  |
|------------------------|---------------------------------------|--|--|
| Temperature            |                                       |  |  |
| Maximum operating      | +50° C (+122° F)†                     |  |  |
| Minimum operating      | 0° C (+32° F)                         |  |  |
| Non-operating          | -55° C to +75° C (-67° to +167° F)    |  |  |
| Humidity               | 10 to 95% relative humidity           |  |  |
| Altitude               |                                       |  |  |
| Operating              | 4.5 km (15,000 ft) maximum            |  |  |
| Non-operating          | 15 km (50,000 ft) maximum             |  |  |
| Electrostatic immunity | The probe adapter is static sensitive |  |  |

\* Designed to meet Tektronix standard 062-2847-00 class 5.

<sup>†</sup> Not to exceed Socket 7 microprocessor thermal considerations. Forced air cooling might be required across the CPU.

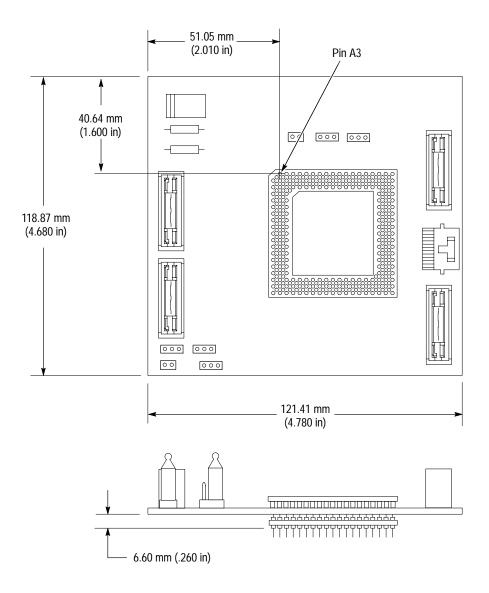



Figure 3–1 shows the dimensions of the probe adapter.

Figure 3–1: Dimensions of the probe adapter

WARNING

The following servicing instructions are for use only by qualified personnel. To avoid injury, do not perform any servicing other than that stated in the operating instructions unless you are qualified to do so. Refer to all Safety Summaries before performing any service.

# Maintenance

# Maintenance

This chapter contains information on the following topics:

- Probe adapter circuit description
- How to replace a fuse

## **Probe Adapter Circuit Description**

The active components on the probe adapter are: five GAL 22V10D PALs for signal synthesis, one LM3940ISX for 5 V to 3.3 V conversion, and one PPL-Buffer and one PLL (phase locked loop) low-skew clock generator for clock distribution with buffer.

The PALs implement three sequential state machines that monitor the Socket 7 microprocessor bus and generate three important signals:

- PIPED\_D indicates Socket 7 microprocessor bus pipelining is occurring
- LAST\_D indicates the end of a Socket 7 microprocessor bus cycle
- DVALID\_D indicates valid data is present on the Socket 7 microprocessor data bus

These signals are required for the Clocking State Machine (CSM) of the logic analyzer to accurately strobe addresses and data information from the Socket 7 microprocessor bus.

The CSM is tightly linked to the processor bus T-states and is synchronized to the Socket 7 microprocessor on a clock by clock basis. It is possible that unpredictable bus behavior by an alternate bus master may cause the bus tracking machines to lose track of the bus. If this occurs, the bus tracking mechanism will automatically re-synchronize and reset itself when the Socket 7 microprocessor exits bus back off or bus hold.

If resynchronizing and reseting the bus tracking machines is not adequate, jumper J920 will disable the bus tracking PALs during any alternate bus master (HLDA) cycle or back off (BOFF #) cycle. If you disable the bus tracking PALs, acquisition of back off or hold cycles are inhibited, and one sample containing unusable information is recorded to show a cycle occurred.

A 20-pin connector, Intel In-Target Probe (ITP), is located on the probe adapter. Your system under test has system reset circuitry that can not be accessed through the SPGA socket, but you may connect the DBRESET signal (or the active low, open collector version OC\_DBRESET\*) to your system reset circuitry externally. A PLL clock generator is used to provide eight, zero-delay copies of the Socket 7 microprocessor CLK input that are distributed to the PALs. Lock time after VCC is a 500  $\mu$ S maximum, the clock is stable before any Socket 7 microprocessor bus cycles start. Table 4–1 lists Socket 7 signal delays when using the probe adapter.

| Signal name                                                                                           | Hardware CLK delays | Firmware CLK delays |  |  |
|-------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|--|
| A31:3, D63:0, BE7-0#,<br>D/C#, M/IO#, PRDY,<br>LOCK#, BUSCHK#,<br>SMIACT#, INIT, SCYC,<br>D/P#, AHOLD | 0                   | 2                   |  |  |
| HLDA, ADS#, BRDY#                                                                                     | 2                   | 0                   |  |  |
| BOFF#                                                                                                 | 2                   | 1                   |  |  |
| RESET, NA#                                                                                            | 1                   | 0                   |  |  |
| W/R#                                                                                                  | 2                   | 1                   |  |  |

Table 4–1: Socket 7 signal delays using the probe adapter

# **Replacing the Fuse**

If the fuse on the Socket 7 probe adapter opens (burns out), you can replace it with a 5 A, 125 V fuse. Figure 4-1 shows the location of the fuse on the probe adapter board.

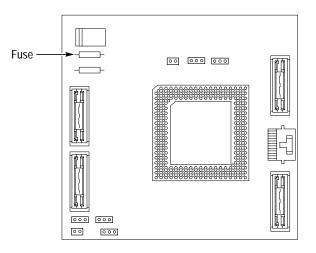



Figure 4–1: Location of the fuse on the probe adapter

# Diagrams

# **Diagrams and Circuit Board Illustrations**

This section contains the troubleshooting procedures, block diagrams, circuit board illustrations, component locator tables, waveform illustrations, and schematic diagrams.

## **Symbols**

Graphic symbols and class designation letters are based on ANSI Standard Y32.2-1975. Abbreviations are based on ANSI Y1.1-1972.

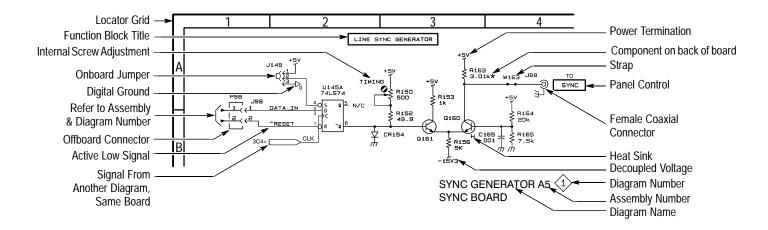
Logic symbology is based on ANSI/IEEE Standard 91-1984 in terms of positive logic. Logic symbols depict the logic function performed and can differ from the manufacturer's data.

The Tilde ( $\sim$ ) after a signal name indicates that the signal performs its intended function when in the low state.

Other standards used in the preparation of diagrams by Tektronix, Inc., include the following:

- Tektronix Standard 062-2476 Symbols and Practices for Schematic Drafting
- ANSI Y14.159-1971 Interconnection Diagrams
- ANSI Y32.16-1975 Reference Designations for Electronic Equipment
- MIL-HDBK-63038-1A Military Standard Technical Manual Writing Handbook

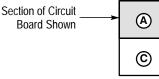
# **Component Values**


Electrical components shown on the diagrams are in the following units unless noted otherwise:

Capacitors: Values one or greater are in picofarads (pF). Values less than one are in microfarads (F).

Resistors: Values are in Ohms ( $\Omega$ ).

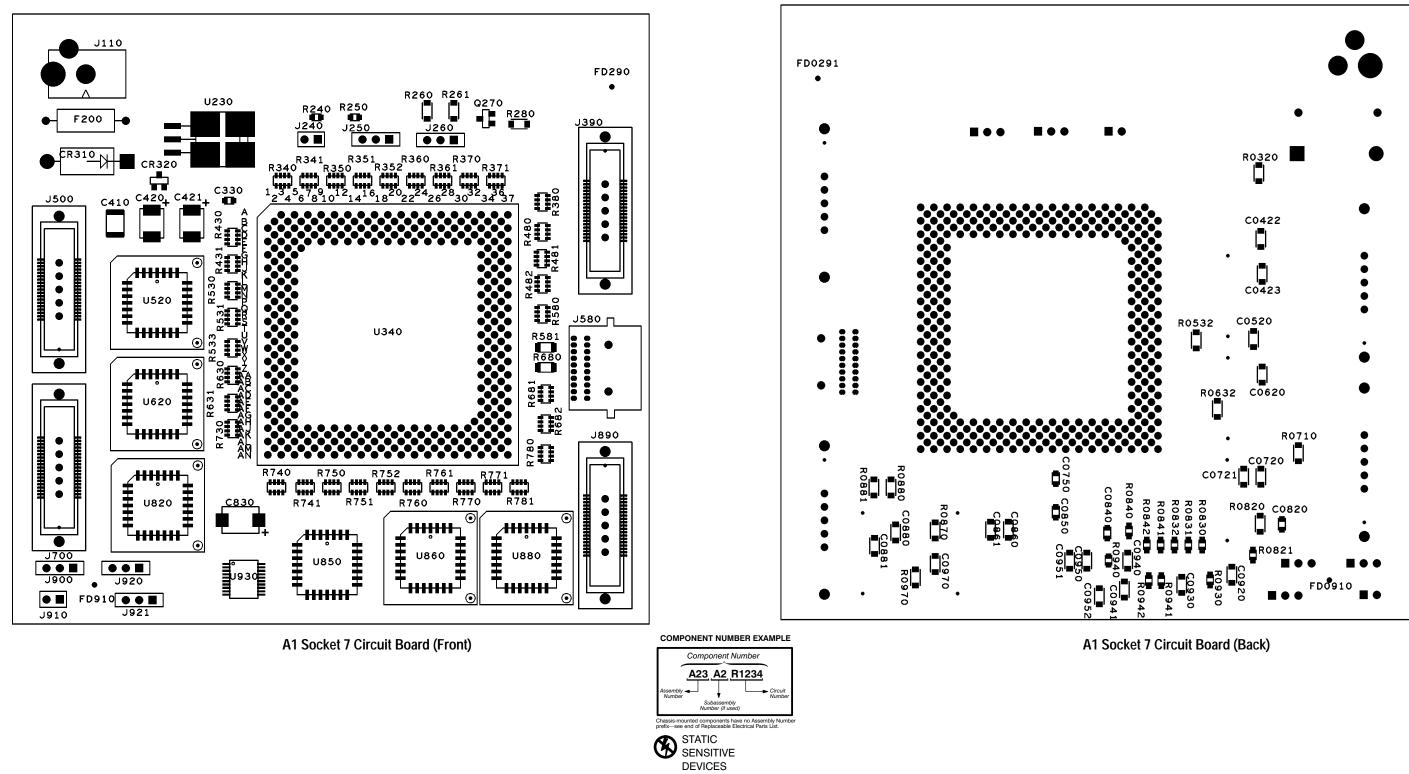
# Graphic Items and Special Symbols Used in This Manual

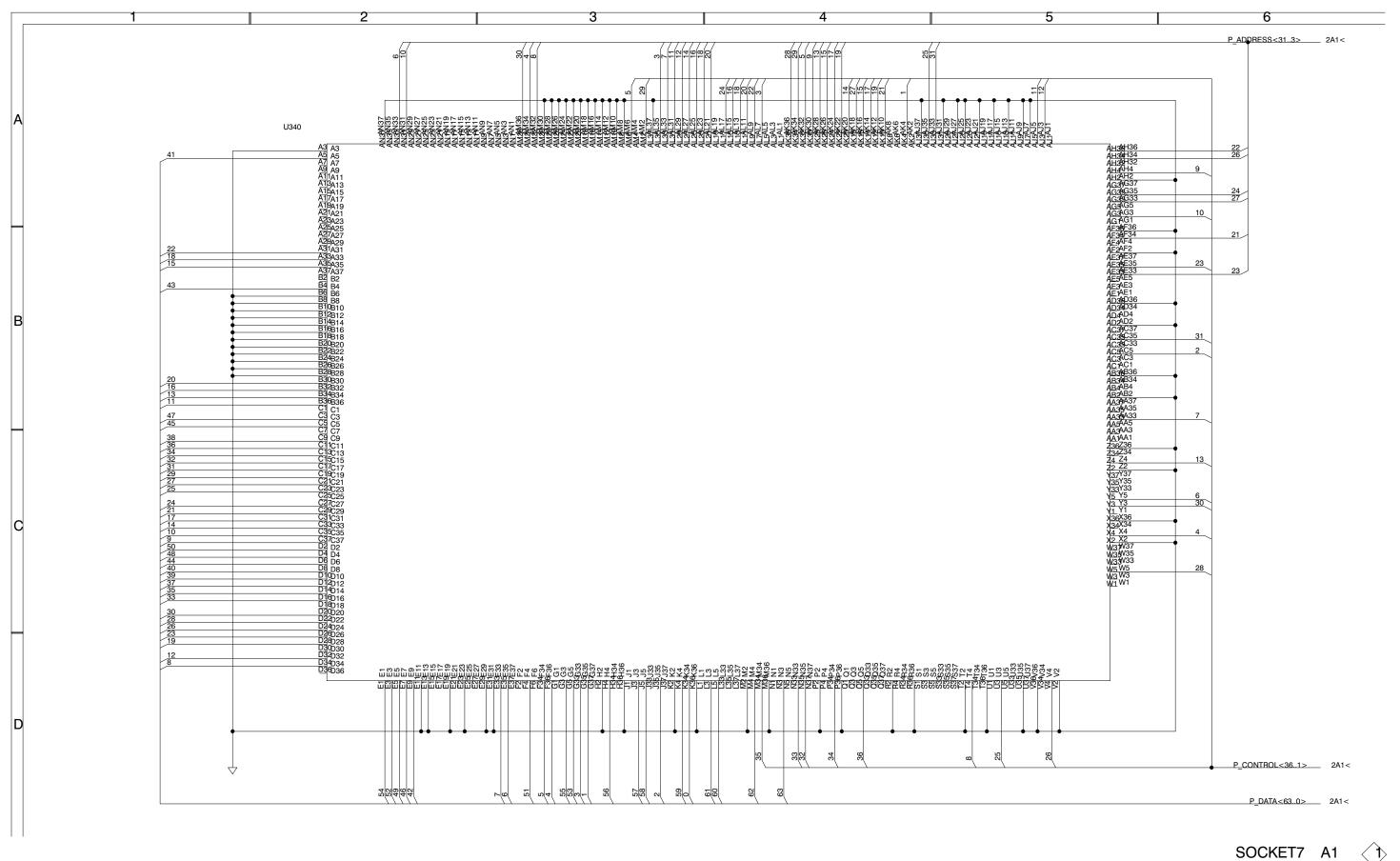

Each assembly in the instrument is assigned an assembly number (for example A5). The assembly number appears in the title on the diagram, in the lookup table for the schematic diagram, and corresponding component locator illustration. The Replaceable Electrical Parts list is arranged by assembly in numerical sequence; the components are listed by component number.



## **Component Locator Diagrams**

The schematic diagram and circuit board component location illustrations have grids marked on them. The component lookup tables refer to these grids to help you locate a component. The circuit board illustration appears only once; its lookup table lists the diagram number of all diagrams on which the circuitry appears.


Some of the circuit board component location illustrations are expanded and divided into several parts to make it easier for you to locate small components. To determine which part of the whole locator diagram you are looking at, refer to the small locator key shown below. The gray block, within the larger circuit board outline, shows where that part fits in the whole locator diagram. Each part in the key is labeled with an identifying letter that appears in the figure titles under component locator diagrams.

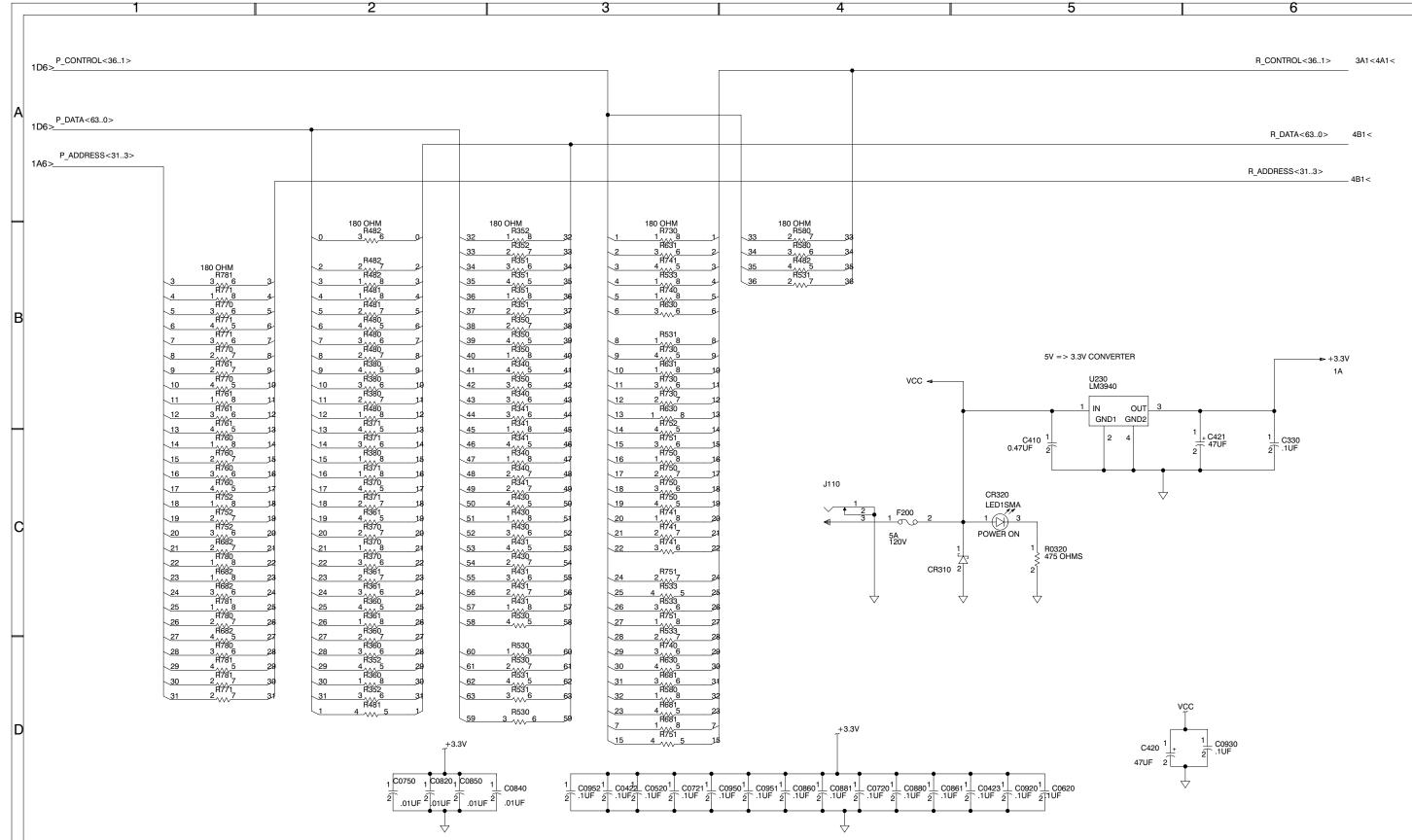



| ₿ |  |
|---|--|
| 0 |  |

TMS 109A Socket 7 Hardware Support

TMS 109A Socket 7 Microprocessor Support





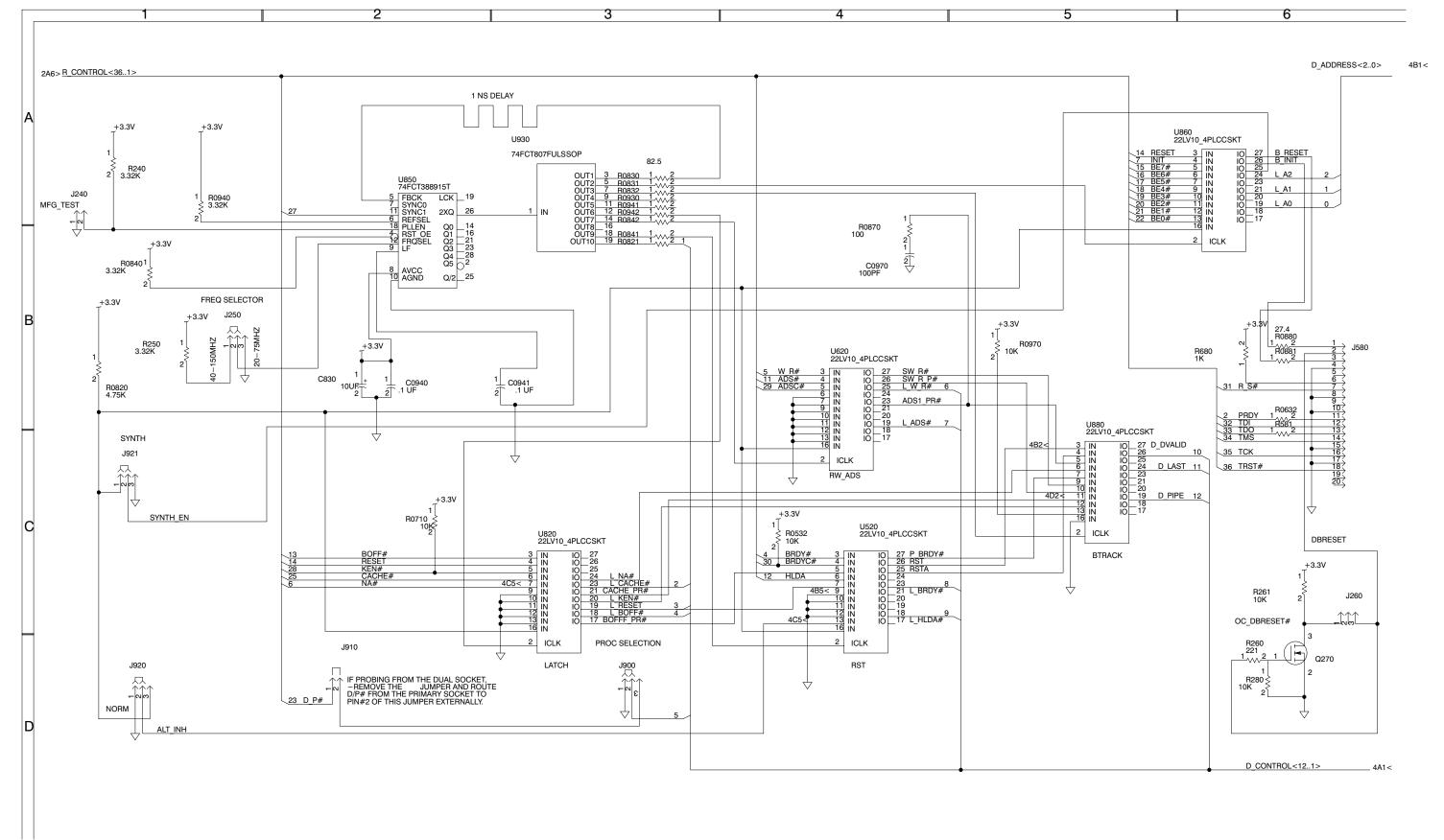

TMS 109A Socket 7 Microprocessor Support

Г

5–5

TMS 109A Socket 7 Microprocessor Support

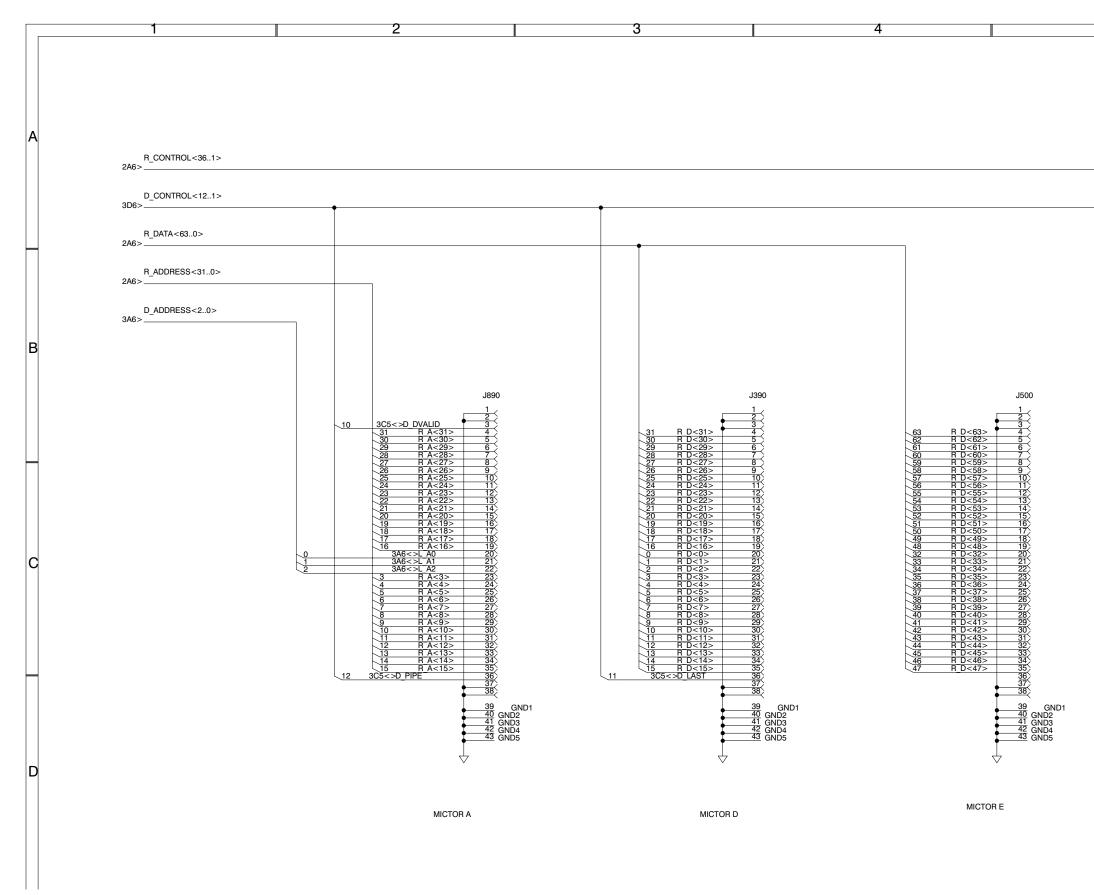



TMS 109A Socket 7 Microprocessor Support

Г

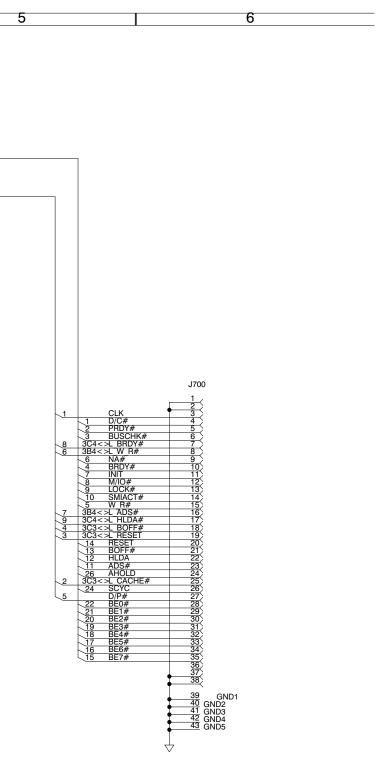


5–7

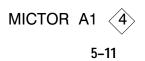

TMS 109A Socket 7 Microprocessor Support



TMS 109A Socket 7 Microprocessor Support




TMS 109A Socket 7 Microprocessor Support




TMS 109A Socket 7 Microprocessor Support

Г



MICTOR C



TMS 109A Socket 7 Microprocessor Support

**Replaceable Parts** 

# **Replaceable Parts**

This section contains a list of the replaceable parts for the TMS 109A Socket 7 microprocessor support product.

# Parts Ordering Information

Replacement parts are available through your local Tektronix field office or representative.

Changes to Tektronix products are sometimes made to accommodate improved components as they become available and to give you the benefit of the latest improvements. Therefore, when ordering parts, it is important to include the following information in your order.

- Part number
- Instrument type or model number
- Instrument serial number
- Instrument modification number, if applicable

If you order a part that has been replaced with a different or improved part, your local Tektronix field office or representative will contact you concerning any change in part number.

**Abbreviations** Abbreviations conform to American National Standard ANSI Y1.1–1972.

Mfr. Code to Manufacturer<br/>Cross IndexThe table titled Manufacturers Cross Index shows codes, names, and addresses<br/>of manufacturers or vendors of components listed in the parts list.

#### Manufacturers cross index

| Mfr.<br>code | Manufacturer                 | Address                                                     | City, state, zip code     |
|--------------|------------------------------|-------------------------------------------------------------|---------------------------|
|              |                              |                                                             |                           |
| 00779        | AMP INC.                     | CUSTOMER SERVICE DEPT<br>PO BOX 3608                        | HARRISBURG, PA 17105–3608 |
| 01KV9        | MERIX CORP                   | 1521 POPLAR LANE<br>PO BOX 3000                             | FOREST GROVE, OR 97116    |
| 04713        | MOTOROLA INC                 | SEMICONDUCTOR PRODUCTS SECTOR<br>5005 E MCDOWELL ROAD       | PHOENIX, AZ 85008-4229    |
| 22526        | BERG ELECTRONICS INC         | 825 OLD TRAIL ROAD                                          | ETTERS, PA 17319–9769     |
| 26742        | METHODE ELECTRONICS INC      | BACKPLAIN DIVISION<br>7444 WEST WILSON AVE                  | CHICAGO, IL 60656-4548    |
| 60381        | PRECISION INTERCONNECT CORP. | 16640 SW 72ND AVE                                           | PORTLAND, OR 97224        |
| 61857        | SAN-O INDUSTRIAL CORP        | 91–3 COLIN DRIVE                                            | HOLBROOK, NY 11741        |
| 63058        | BERG ELECTRONICS INC.        | MCKENZIE SOCKET DIV<br>910 PAGE AVE                         | FREMONT, CA 94538-7340    |
| 80009        | TEKTRONIX INC                | 14150 SW KARL BRAUN DR<br>PO BOX 500                        | BEAVERTON, OR 97077-0001  |
| 82389        | SWITCHCRAFT                  | DIV OF RAYTHEON<br>5555 N. ELSTON AVENUE                    | CHICAGO, IL 60630-1314    |
| 85480        | BRADY USA                    | NAMEPLATE DIVISION<br>P O BOX 571<br>346 ELIZABETH BRADY RD | HILLSBOROUGH, NC 27278    |

#### Replaceable parts list

| Fig. &<br>index<br>number | Tektronix<br>part number | Serial no.<br>effective | Serial no.<br>discont'd | Qty | Name & description                                                                                 | Mfr. code | Mfr. part number        |
|---------------------------|--------------------------|-------------------------|-------------------------|-----|----------------------------------------------------------------------------------------------------|-----------|-------------------------|
| 6–1–0                     | 010-0614-00              |                         |                         | 1   | ADAPTER,PROBE SOCKET-7, SOCKETED,<br>PGA-321 PIN:TMS109A                                           | 80009     | 010-0614-00             |
| -1                        | 671–4737–00              |                         |                         | 1   | CIRCUIT BOARD:SOCKET-7,SOCKETED,PGA-321<br>PIN,TMS109A                                             | 80009     | 671-4737-00             |
| -2                        | 105–1089–00              |                         |                         | 4   | LATCH ASSY:LATCH HOUSING ASSY,VERTICAL<br>MOUNT,0.48 H X 1.24 L,W/PCB SINGLE CLIP,P6434            | 60381     | 105–1089–00             |
| -3                        | 131–6134–01              |                         |                         | 4   | CONN,RCPT:SMD,MICTOR,FEMALE,STR,38<br>POS,0.025 CTR,0.240 H,W/0.108 PCB HOLD<br>DOWNS.PALLADIUM    | 00779     | 767054–1                |
| -4                        | 131-4406-00              |                         |                         | 1   | CONN,HDR:PCB,MALE,RTANG,2 X 10,0.05 X 0.1<br>CTR,0.350 H X 0.100 TAIL,CTR PLZ,LATCHING,30 G        | 00779     | 104069–1                |
| -5                        | 131–1857–00              |                         |                         | 1   | CONN,HDR:PCB,MALE,STR,1 X 36,0.1 CTR,0.230<br>MLG X 0.100 TAIL,GOLD,                               | 22526     | 65507–136               |
| -6                        | 136–1342–00              |                         |                         | 1   | SOCKET (AMD) ,PGA:PCB,PGA,STR,321 POS,37 X<br>37, OPEN CTR,SHORT PINS, 0.1 X 0.1 CTR, 30<br>GOLD   | 63058     | PZA-321H-120B-<br>37AU  |
| -7                        | 136–1346–00              |                         |                         | 1   | SOCKET (INTEL) ,PGA:PCB,STR,296 POS,36X36,<br>OPEN CTR,0.10 X 0.10 CTR,0.165 H X 0.125 TAIL, 30    | 63058     | PZA-63150-001           |
| -8                        | 131-6610-00              |                         |                         | 1   | JACK,POWER DC:PCB,MALE,RTANG,2MM D<br>PIN,BRASS,SILVER PLATE,5A,                                   | 82389     | RAPC722TB               |
| _9                        | 159-0059-00              |                         |                         | 1   | FUSE,WIRE LEAD:5A,125V                                                                             | 61857     | SPI-5A                  |
| -10                       | 131-4917-00              |                         |                         | 1   | CONN,HDR:PCB,MALE,STR,1 X 2,0.1 CTR,0.235<br>MLG X 0.110 TAIL,30 GOLD,TUBE,HIGH TEMP,              | 00779     | 104350–1                |
| -11                       | 131-4530-00              |                         |                         | 5   | CONN,HDR:PCB,MALE,STR,1 X 3,0.1 CTR,0.230<br>MLG X 0.120 TAIL,30 GOLD,BD RETENTION,                | 00779     | 104344–1                |
| -12                       | 131-4356-00              |                         |                         | 5   | CONN,SHUNT:SHUNT/SHORTING,FEMALE,1 X 2,0.1<br>CTR,0.63 H,BLK,W/HANDLE,JUMPER,30 GOLD,              | 26742     | 9618–302–50             |
|                           |                          |                         |                         |     | STANDARD ACCESSORIES                                                                               |           |                         |
|                           | 071–0497–01              |                         |                         | 1   | MANUAL,TECH:INSTRUCTION, SOCKET-7;<br>TMS109A                                                      | 80009     | 071-0497-01             |
|                           | 161–0104–00              |                         |                         | 1   | CA ASSY,PWR:3,18 AWG,98 L,250V/10AMP,98<br>INCH,RTANG,IEC320,RCPT X STR,NEMA<br>15–5P,W/CORD GRIP  | S3109     | ORDER BY<br>DESCRIPTION |
|                           | 119–5061–01              |                         |                         | 1   | POWER SUPPLY:25W,5V 5A,CONCENTRIC<br>2MM,90–265V,47–63 HZ IEC,15X8.6X5 CM, UL,CSA,<br>TUV,IEC,SELF | 14310     | SW108KA0002F01          |
|                           |                          |                         |                         |     | OPTIONAL ACCESSORIES                                                                               |           |                         |
|                           | *                        |                         |                         | 4   | P6434 MASS TERMINATION PROBE, Opt 21 *                                                             | 80009     | P6434                   |
|                           | 161–0104–05              |                         |                         | 1   | CA ASSY,PWR:3,1.0MM SQ,250V/10A,2.5<br>METER,RTANG,IEC320,RCPT,AUSTRALIA,SAFTEY<br>CONTROLLED,     | TK1373    | 161–0104–05             |
|                           | 161–0104–06              |                         |                         | 1   | CA ASSY,PWR:3,1.0MM SQ,250V/10A,2.5<br>METER,RTANG,IEC320,RCPT,EUROPEAN,SAFTEY<br>CONTROLLED       | TK1373    | ORDER BY<br>DESCRIPTION |

#### Replaceable parts list (cont.)

| Fig. &<br>index<br>number | Tektronix<br>part number | Serial no.<br>effective | Serial no.<br>discont'd | Qty | Name & description                                                                                 | Mfr. code | Mfr. part number        |
|---------------------------|--------------------------|-------------------------|-------------------------|-----|----------------------------------------------------------------------------------------------------|-----------|-------------------------|
|                           | 161–0104–07              |                         |                         | 1   | CA ASSY,PWR:3,1.0MM SQ,240V/10A,2.5<br>METER,RTANG,IEC320,RCPT X 13A,FUSED,UK<br>PLUG,(13A FUSE)   | TK2541    | ORDER BY<br>DESCRIPTION |
|                           | 161–0167–00              |                         |                         | 1   | CA ASSY,PWR:3,0.75MM SQ,250V/10A,2.5<br>METER,RTANG,IEC320,RCPT,SWISS,NO CORD<br>GRIP,SAFTEY CONTR | S3109     | ORDER BY<br>DESCRIPTION |

\* Check the P6434 manual for detailed replaceable part number information.

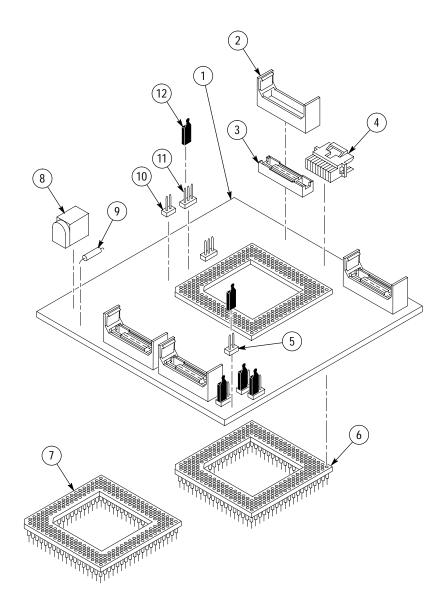



Figure 6–1: TMS 109A Socket 7 probe adapter exploded view

Replaceable Parts

# Index

# Index

# Numbers

3DNow! instruction set, 2–25 40 MHz system under test, 1–4

# A

about this manual set, ix acquiring data, 2–9 below 40 MHz, 1–4 Acquisition Setup, 1–20 Address, channel assignments, 1–14 Address group, display column, 2–14 Address Synthesis Jumpers, Address Synthesis, 1–6 AHOLD signal, during Writeback cycle, 1–2 Alternate Bus Master cycles, 2–4 Alternate Connections, ITP, 1–10 asterisks, indicates out-of-order fetch, 2–21

# В

branch trace messages, 2–21 Burst cycles, addresses in state data, 1–2 burst cycles, 2–24 bus anomalies, 1–3 bus cycles, displayed cycle types, 2–12 Bus Hold cycles, 1–2

# С

Cache, channel assignments, 1-19 cache, instruction, 1-2Cache Invalidation cycles, 1-2, 2-24 channel assignments Address, 1-14 Cache. 1-19 clocks and QUAL, 1-20 control, 1-18 Data. 1-15 Data Size, 1-19 Data\_Lo, 1–17 Misc, 1-19 Signals not connected, 1–21, 1–22 signals not required, 1–21 Signals on the Probe Adapter, 1-21 channel groups, 2-1 Chip Set mode, 2-5 clock and QUAL channel assignments, 1-20 clock channel assignments, 1–21 clock rate, 1–2 clocking, Custom, how data is acquired, 2–1 Code Segment Size field, 2–18 connections CPU to Mictor, 1–22 microprocessor removal, 1–7 probe adapter to SUT, 1–6 sockets, 1–8 Control, channel assignments, 1–18 Control Flow display format, 2–15 Control group, symbol table, 2–5 CPU to Mictor connections, 1–22 Custom clocking, how data is acquired, 2–1 cycle types, 2–12

# D

D/P# Signal Jumper, 1-5 Data, channel assignments, 1–15 data acquiring, 2-9 disassembly formats Control Flow, 2-15 Hardware, 2-12Software, 2-15 Subroutine, 2-16 data display, changing, 2-17 Data group, display column, 2-14 Data Size, channel assignments, 1-19 Data\_Lo, channel assignments, 1–17 Data\_Lo group, display column, 2-14 definitions disassembler, ix information on basic operations, ix demonstration file, 2-28 Descriptor Table reads and writes, 1-3 dimensions, probe adapter, 3–4 Directory Table reads and writes, 1-3 disassembled data cycle type definitions, 2-12 viewing, 2-9 viewing an example, 2-28 disassembler definition, ix logic analyzer configuration, 1–1 setup, 2–1 Disassembly Format Definition overlay, 2-17 Disassembly property page, 2–17

display, multiple lines for one sample, 2–11 display formats Control Flow, 2–15 Hardware, 2–12 Software, 2–15 special characters, 2–10 Subroutine, 2–16 dual processor tracing, 2–18 dual processors execution tracing, 2–18

# E

electrical specifications, 3–2 environmental specifications, 3–3 exception vectors, 2–26

# F

functionality not supported, 1–3 reads/writes, 1–3 fuse probe adapter, 4–2 replacing, 4–2

# Η

Hardware display format, 2–12 cycle type definitions, 2–12 out-of-order fetches, 2–21

installing hardware. *See* connections Interrupt Table Address field, 2–18 Interrupt Table field, 2–18 Interrupt Table Size field, 2–18 ITP. *See* connections

# J

jumpers Address Synthesis, 1–6 CLK, 1–5 D/P# Signal, 1–5 MFG\_TEST, 1–4 Processor Selection, 1–5 Tracking, 1–6

# L

logic analyzer configuration for disassembler, 1–1 software compatibility, 1–1

## Μ

manual conventions, ix how to use the set, ix Mark Cycle function, 2–25 Mark Opcode function, 2–25 marking cycles, definition of, 2–25 MFG\_TEST pins, 1–4 microprocessor, specific clocking and how data is acquired, 2–1 Mictor to CPU connections, 1–22 Misc, channel assignments, 1–19 MMX instruction set, 2–25 Mnemonic display column, 2–14

# 0

Other Processor field, 2–18 out-of-order fetches definition, 2–21 Hardware display format, 2–21 scrolling to some instructions, 2–15 Software display format, 2–22

# Ρ

power for the probe adapter, applying, 1–13 SUT, 1–2 power adapter, 1–13 power jack, 1–14 prefix override bytes, 2–26 primary processor tracing, 2–18 probe adapter circuit description, 4–1 clearance, 1–6 dimensions, 3–4 configuring, 1–4 hardware description, 3–1 jumper positions, 1–4 replacing the fuse, 4–2 Probe Mode cycles, 1–3 Processor Selection Jumper, 1–5

# R

reads/writes, 1–3 reference memory, 2–28 restrictions, 1–2

# S

segments, size and prefix override bytes, 2-26 service information, 4-1 setups, disassembler, 2-1 signals, active low sign, ix, 1–14 Signals not connected, 1-21, 1-22 Signals on the Probe Adapter, 1-21 Socket 7 signal delays, 4-2 Software display format, 2–15 out-of-order fetches, 2–22 special characters ?? indicates mnemonic field placement, 2-11 (16) or (32) indicates bit code segment, 2-10(3DNow!) indicates instruction set, 2-10 (FLUSH) instruction flushed, 2-10 (MMX) indicates instruction set, 2-10 # indicates an immediate value, 2-10 - indicates bus cycle from "Other" processor, 2-10 \* (asterisk) to indicate out-of-order fetches, 2-21 \*\*\*\* indicates insufficient data avaliable, 2-10

<more>, 2-22 > indicates insufficient room on screen, 2–10 >> indicates manually marked fetch program, 2-10 c indicates cache invalidation, 2-24 SMM indicates system mode cycle, 2-10 t indicates number is in decimal, 2-10 special characters displayed, 2-10 specifications, 3-1 channel assignments, 1-14 electrical, 3-2 environmental, 3-3 mechanical (dimensions), 3-4 speculative prefetch cycles, 2–23 Subroutine display format, 2–16 support setup, 2-1 SUT power, 1-2 symbol table, Control channel group, 2-5 system file, demonstration, 2–28 System Management Mode, 2-25

# Т

terminology, ix Timestamp display column, 2–14 Trace Processor field, 2–18 Tracking Jumpers, 1–6

## V

viewing disassembled data, 2-9